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Abstract 

Digital extortion emerges a significant threat to organizations that rely on information 

technologies for their business and operations. We study, with human-subject experimentation, 

how normative appeals may influence defenders’ engagement of investing in security and refusal 

to pay ransoms as mitigating strategies to this digital extortion threat. We explore the effects of 

four types of normative appeals: injunctive norms and descriptive norms promoting investing or 

not-paying ransoms. We find that the defenders’ decisions deviate from the predictions of game 

theory. However, given the strategic interactions between the defenders and the attacker as well as 

noisy decision-making behaviors, it is challenging to untangle the influence of the treatment 

interventions on the defenders. We develop a structural model using the quantal response 

equilibrium framework to determine how normative appeals change the defenders’ utilities of 

investing and not-paying. While interventions may be successful in increasing the utilities of 

investing and/or not-paying, their impacts are mitigated by the attacker reducing ransoms. Thus, it 

is challenging for an intervention to significantly boost a community’s investment rate or to 

suppress ransom payment rate. Based on the model, we characterize how security outcomes of a 

community (including expected ransoms, attack rate, investment rate, payment rate) change with 

the defenders’ utilities of investing and not-paying. The results to two new interventions, a penalty 

for paying ransoms and the ability for defenders to communicate via text chat, further validate the 

modeling results.  

 

Keywords: Information Security, Behavioral Economics Experiments, Game Theory, Quantal 

Response Equilibrium, Normative Appeals, Injunctive Norms, Descriptive Norms 
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Coping with Digital Extortion: An Experimental Study on Normative Appeals 

1. Introduction 

Digital extortion refers to the criminal act of compelling an organization to pay a ransom for saving 

systems from being wiped out or gaining back access to seized data1 (Sancho, 2017, Thakkar, 

2017). Ransomware has become one of the most popular attack vectors for digital extortion 

(Crowdstrike, 2020, Verizon, 2020). Its campaigns grow on the basis of high money-making 

potential and low chance of arrest (Thakkar, 2017). A Kaspersky security bulletin (Kaspersky, 

2016) suggests every 40 seconds there is an organization attacked with ransomware in the third 

quarter of 2016. According to the 605 companies surveyed by Radware in 2017 (Radware, 2018), 

approximately 42% of them experienced ransomware attacks, 40% more than in 2016. The severity 

of the threat is well demonstrated by WannaCry, affecting more than 230,000 computers in over 

150 countries in May 2017 (Ehrenfeld, 2017). More recently, it is widely reported that the 

University of California at San Francisco paid $1.14 million to Netwalker ransomware attackers 

to recover research data for their school of medicine.  

Two strategies may be available to “defenders” (i.e., any organization that can be a potential 

victim) for coping with digital extortion. The first is investing in information security, such as 

introducing intrusion prevention systems, encrypting devices, and properly backing up data 

(Brewer, 2016), to reduce the chance of being exploited. Unique to digital extortion, another form 

of mitigation may also be available. That is, if all defenders can commit to refuse to pay ransoms, 

cybercriminals (referred to as “attackers” in the rest of the paper) will have no incentive to carry 

out the attacks in the first place. However, both mitigation strategies may have incentive issues. 

Security investments can be costly, and the impacts of such investment may be difficult to foresee 

(Anderson and Moore, 2006). Although it is publicly advised at news media (e.g., Mathews, 2018) 

and advocated by government agencies (FBI, 2016), refusal to pay ransoms may be problematic 

for defenders given the risk of losing their seized assets and resulting in business disruption 

(Everett, 2016, Liska and Gallo, 2017). Defenders’ investment and refusal to pay reduce the threat 

by changing the incentives of the attackers. Their benefits are endogenous contingent on attackers’ 

decisions.   

 
1 While ransomware is a consumer problem as much as a business problem, this study focuses on businesses and 

organizations.  
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One potential solution is to strengthen social norms to encourage good behavior on the part of 

the defenders. Social norms refer to “the rules and standards that are understood by members of a 

group, and that guide and/ or constrain social behavior without the force of laws” (Cialdini and 

Trost, 1998, p152). Following social norms is often considered to be adaptive especially when 

decision makers face uncertainty. Social norms may help decision makers to gain a good 

understanding of social situations and enable them to have effective responses (Cialdini, 2001). 

Researchers have argued that normative information encourages a person to behave more securely. 

For example, Yazdanmehr and Wang (2016) showed that employees’ perception about others’ 

opinions on or behavior of complying with information security policies in an organization is 

positively associated with their compliance intention. Based on retrospective interviews, Das et al. 

(2014) suggested that social influence raises decision makers’ security sensitivity, and plays an 

important role in changing a range of privacy and security-related behavior. In the context of 

adopting security features among Facebook users, simply showing people the number of their 

friends that used security features drives more people to explore and adopt such features (Das et 

al., 2015, Das et al., 2014).  

Along this line of thought, we design the study to explore the potential of social norms as 

solutions to the digital extortion problem. We investigate whether good behaviors (i.e. investing 

in security and refusing to pay ransoms) in fighting with digital extortion are susceptible to 

normative appeals for investing and not-paying ransoms. Given the complexity of the strategic 

interactions in a digital extortion setting, and the multiple incentives and decisions in play, the 

goals of the paper are modest and in three fold: (1) Can we show normative appeals, more 

specifically, injunctive appeals (“ought to”) and descriptive appeals (“what others are doing”), are 

effective at nudging the defenders in investing and refusing to pay? (2) Given the possible strategic 

interactions and noisy decision-making behaviors (which are a common feature in observed human 

decisions ), how do we quantify the effect of treatments on the defenders’ utilities of investing and 

not-paying? (3) What are the relationships between the defenders’ utilities of investing or not-

paying and security outcomes of a community (including expected ransoms, attack rate, 

investment rate, and payment rate)? It is out of the scope of this paper to find an optimized best 

strategy against ransomware attack although the results reported in this paper is a first step towards 

building a strategy.  
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To address these questions, we employ a combination of game theory analyses, human-subject 

experimentation, behavioral economics modeling, and numerical analyses. We first establish a 

baseline for attacker-defender interactions employing game theoretic analyses. However, it is well 

known that game theory does not always capture realistic human decision-making behaviors. Field 

studies will involve too many confounding factors, and it would be challenging to infer causality 

and to measure social norms in a rigorous manner. Thus, human subject experimentation is the 

most promising approach. This is, indeed, in line with the current trend of using economic 

experiments in management science and operations management studies (please see Donohue et 

al. (2018) for a review of this literature). Economic experiments can be a valuable tool, but 

currently are underused in the field of Information Systems. Economic experiments can bridge the 

gap between the rational economic models and the capabilities of human decision making, and 

provide an alternative mechanism to develop insights overcoming some limitations in analytical 

modeling and/or empirical analysis of secondary data (Gupta et al., 2018).  

Game theory analyses provide the guidance for the calibration of experimental parameters. 

With human-subject experiments, we examine four types of normative appeals, including 

injunctive appeals and descriptive appeals encouraging investing and refusing to pay. We find that 

the attackers strategically respond to the treatments by lowering their ransoms. It is difficult for 

the standard statistical analyses to show the isolated effects of the treatments on motivating the 

defenders. Therefore, we develop a structural model incorporating bounded rationality based on 

the quantal response equilibrium framework (QRE) (Mckelvey and Palfrey, 1995, Mckelvey and 

Palfrey, 1998), parametrizing the impacts of a treatment directly into the defenders’ utility 

functions. The goal of the behavioral model is to quantify the impacts of normative appeals on the 

defenders’ utilities of investing and not-paying, considering the players’ strategic interactions and 

noisy decision-making behaviors. We confirm that normative appeals indeed drive the defenders 

to the desirable directions. While interventions may be successful in increasing the utility of 

investing or that of not-paying ransoms, their impacts can be mitigated with the attacker reducing 

ransoms or overshadowed by noisy decision-making behaviors. Thus, it is challenging for an 

intervention to significantly boost investment rate and lower payment rate. 

Relying on numerical analyses, we characterize how security outcomes of a community 

(including expected ransoms, attack rate, investment rate, and payment rate) change with the 

defenders’ utilities of investing and not-paying. Our results reveal that as the utility of investing 
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increases, investment rate is likely to increase considerably, but there is almost no change in 

payment rate. As the utility of not-paying increases, both investment rate and payment rate 

decrease slightly. The attacker is more likely to decrease ransoms for a higher not-paying utility 

than for a higher investing utility, and more likely to lower their attack rate for a higher investing 

utility than and for a higher not-paying utility.  

The value of the behavior model is further demonstrated with the test of two alternative 

interventions. These include an incentive manipulation with a penalty for ransom payments, and a 

social interaction manipulation with chat. Both interventions nudge the defenders to invest and 

refuse to pay at certain degrees, but fail to boost investment rate and suppress payment rate 

significantly, as the behavioral model suggests. The study suggests potential approaches, but also 

identifies challenges, and offers a modeling framework to evaluate interventions, for fighting 

against digital extortion for policy makers.  

This paper is organized as follows. In §2, we summarize the related theoretical and empirical 

literature in information security investment. §3 provides the details of our model setting and game 

theory predictions. §4 details of our experimental procedures and hypotheses. We build behavior 

models to explain our experimental results in §5. §6 summarizes alternative interventions. Finally, 

we conclude the paper with a discussion of research and managerial implications, limitations, and 

future extensions in §7.  

 

2. Literature Review 

Prior studies that investigate how organizations optimize their security spending employ two main 

approaches: traditional risk/decision and game theoretical analysis (Cavusoglu et al., 2008, Wang 

et al., 2008). The traditional risk/decision analysis models treat security risk as exogenous 

environmental threats and apply an approach of optimal-control theoretic certainty equivalence. 

For example, Gordon and Loeb (2002) examine investment in information security, under different 

security breach functions and different levels of vulnerability, as a decision optimization problem 

where a firm maximizes the expected benefit of such investment. Wang et al. (2008) apply the 

notion of Value at Risk and extreme value theory to security investment decisions, incorporating 

risk preferences of decision makers into the model. Yet such approaches do not consider strategic 

interactions between defenders and attackers, and in particular, how security spending would 

influence the attackers’ behavior.  
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Another stream of literature focuses on game theoretic analysis where information security is 

considered as a public goods to capture its across-firm/defender interdependent  nature (Anderson 

and Moore, 2006). However, the externalities of firms’ effort levels are typically controlled by 

exogenous parameters (Heal and Kunreuther, 2007, Kunreuther and Heal, 2003). This type of 

setting, with firms making independent decisions of their security investments, often results in 

incentive misalignment problems where system optimality, in investment levels of firms, is not 

achieved (Kunreuther and Heal, 2003). Varian (2004) examines a case of this type of free rider 

problem. Gal-Or and Ghose (2005) investigate economic incentives for sharing security 

information, and find that security investments and security information sharing act as strategic 

complements in equilibrium. Zhao et al. (2013) explore how cyber-insurance can help firms 

optimize security spending given security interdependence. 

Prior analytical studies provided important insights to security investment and resource 

spending. However, in most of these studies, attackers are not a part of the setting. Their decisions 

on whether to attack and what to attack, characterized by risk functions, are modeled as exogenous. 

One such exception in the literature is Cremonini and Dmitri (2009) where a game theoretical 

model is used to argue that rational attackers are likely to direct their effort toward less-protected 

targets, and by signaling their security characteristics the defenders may improve their welfare. 

Another paper, Kannan et al. (2016) explore how attackers’ strategic reactions to patching 

influence a vendor’s pricing and software maintenance decisions. But none of these studies 

investigate digital extortion.  In addition, prior analytical modeling studies assume that defenders 

and attackers make rational choices given available information. Research in behavioral 

economics have well documented that the rationality is bounded (Simon, 1947), and decision 

makers suffer a range of cognitive biases when making choices under uncertainty (Tversky and 

Kahneman, 1974). 

Digital extortion emerges as a new type of threats to organizations. Such attacks complicate 

the defenders’ problem further by presenting an additional option, that is paying the attacker a 

ransom to eliminate the threat and/or redeem the seized assets, besides relying on security 

investment to reduce the chance of being exploited (Sancho, 2017, Thakkar, 2017). Prior literature 

has barely explored how the defenders make the decisions of security investment and ransom 

payment responding to digital extortion. Most studies in ransomware and digital extortion take a 

technical and descriptive perspective (Gazet, 2010, Kharaz et al., 2016, Kharraz et al., 2015, Luo 
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and Liao, 2007, Scaife et al., 2016, Sittig and Singh, 2016), illustrating the techniques employed 

by such attacks, developing detection approaches, and suggesting best practices for organizations. 

How defenders and hackers strategically interact and respond to each other in the setting of digital 

extortion is far from well-understood.  

Since the interventions we investigate are drawn from normative appeals, the last relevant 

stream of literature is about social norms. Social norms have been shown to be important in 

changing a range of human behaviors (Cialdini, 2001, Cialdini and Trost, 1998). Studies in 

information systems examine the power of social norms in a variety of settings (e.g., stimulating 

online reviews (Burtch et al., 2018), contributing in virtual communities (Tsai and Bagozzi, 2014), 

motivating goal setting and goal attainment for physical activity (Liu et al., 2019)). Social norms 

are also recognized to be an important factor driving individual security behavior, including policy 

compliance intention (Bulgurcu et al., 2010, Herath and Rao, 2009, Yazdanmehr and Wang, 2016), 

resources misuse intention (Chu et al., 2015), personal computer and internet protection intention 

(Anderson and Agarwal, 2010). As most studies in information security examine the impact of 

social norms rely on survey and self-reported data, social norms are often measured based on what 

a respondent believes that most others are doing so and what a respondent believes that influential 

others expect him or her to do.  

 

3. Model Setting and Game Theoretical Prediction 

Following the design philosophy of parsimony, we use the simplest model that captures the 

endogenous public goods nature of security and the ability of the attacker to choose the weaker 

defender for exploitation (Cremonini and Dmitri, 2009, Zhao et al., 2013). Hence, the minimum 

number of players needed is three, with one attacker and two defenders. To focus on the strategic 

interactions of the attacker and the defenders only, we make a series of assumptions consistent 

with that goal. We assume the defenders are symmetrical to ensure the choice of whom to attack 

is purely based on strategic consideration and not environmental asymmetry. We assume the 

defenders’ investment decisions are binary choices. That is, they decide either to invest or not-to-

invest with a constant cost and a reduction of probability of being successfully attacked. The values 

of data (i.e. the object of extortion) are known. These variables (i.e. investment costs, success-

attack-probabilities, data values) are all common knowledge to all three players. Figure 1 describes 

the chronological order of events in a round of the digital extortion game.  
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Figure 1. Order of Events of Digital Extortion Game 

We use 𝑥 with a subscript as the decision variable. Three are discrete variables, including the 

defender j’s investment decision (𝑥𝑖𝑗), her ransom payment decision (𝑥𝑝𝑗), and the attacker’s attack 

decision (𝑥𝑎). One is continuous that is the attacker’s ransom price (𝑥𝑟). In the first stage (T1), the 

defenders decide whether to invest in security. 𝑥𝑖𝑗 = 1 if the defender 𝑗 (𝑗 = 1 𝑜𝑟 2) decides to 

invest, 0 otherwise. The cost of security investment is 𝐼. The data value to be protected by a 

defender is 𝑣. The probability of a successful attack (or being compromised for a defender) is 𝑝𝑁𝐼 

without investment and 𝑝𝐼 with investment. We assume, without the loss of generality, 0 < 𝑝𝐼 <

𝑝𝑁𝐼. 

After observing the defenders’ investment decisions, the attacker chooses whether to attack a 

defender (𝑥𝑎) and ask for a ransom (𝑥𝑟) in the second stage (T2). 𝑥𝑎 = 𝑗 if the attacker decides to 

attack the defender 𝑗. 𝑥𝑎 = 0 if the attacker decides not to attack, and, in this case, he receives a 

fixed outside option payment (𝑐) as the payoff. This outside option is also common knowledge to 

all players.  

In the third stage (T3), if the attack is unsuccessful, the attacker receives nothing. The defenders 

receive their data value 𝑣 minus an appropriate investment cost, 𝐼 or 0 contingent on the defenders’ 

investment decision (𝑥𝑖𝑗). If the attack is successful, the affected defender chooses whether to pay 

the ransom (𝑥𝑝𝑗). 𝑥𝑝𝑗 = 1 if the defender j decides to pay, 0 otherwise. If the defender decides to 

pay, the attacker receives the ransom as the payoff. The defender receives her data value 𝑣 minus 

an appropriate investment cost and the ransom price (𝑥𝑝𝑗). If the defender decides not to pay, both 

the defender and the attacker receive nothing. The unaffected defender receives her data value 𝑣 

minus an appropriate investment cost.  

The Nash equilibrium can be found by backward induction. If a defender is successfully 

attacked, she will pay any ransom 𝑥𝑟 up to the data value 𝑣. Hence, the attacker will choose a 

ransom, 𝑥𝑟 = 𝑣, anticipating if the attack is successful, the defender will prefer, weakly, to pay. 
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Given the last stage solution, the expected payoff for the attacker is: 

𝑢𝑎 = {

𝑝𝐼𝑣                  𝑥𝑎 = 𝑗 | 𝑥𝑖𝑗 = 1

𝑝𝑁𝐼𝑣       if     𝑥𝑎 = 𝑗 | 𝑥𝑖𝑗 = 0 

𝑐                      𝑥𝑎 = 0                 

 

Knowing that, the attacker will only attack if his expected payoff, from attacking, is bigger 

than his outside option 𝑐. Depending on the values of 𝑣, 𝑝𝐼, 𝑝𝑁𝐼 and 𝑐, and the strategies chosen 

by the two defenders, the attacker’s equilibrium changes. Table 1 presents all the possible cases. 

Summarizing Table 1, there are 3 relevant parametric conditions. Figure 2 illustrates the 

attacker’s equilibrium strategy in a more intuitive manner. If the outside option 𝑐 is higher than 

𝑝𝑁𝐼𝑣, then the attacker has no incentive to attack, no matter what the defenders do. If the outside 

option 𝑐 is lower than 𝑝𝐼𝑣, then the attacker is better off attacking no matter what the defenders 

do. The attacker clearly will choose the defender who does not invest if the other defender invests. 

In the case where the two defenders follow the same strategy, the attacker will randomly choose 

one of the defenders to attack. If the outside option 𝑐 is in-between 𝑝𝐼𝑣 and 𝑝𝑁𝐼𝑣, then the attacker 

will only attack if at least one of the defenders decides not to invest. Next, we apply backward 

induction once more time to obtain the equilibrium for the first stage (T1). Based on the analysis 

of the attack decisions, there are three cases. 

 

Figure 2. The Attacker’s Equilibrium Strategy 

Table 1. All Possible Cases of Attack Decisions 

Defender 1 strategy 

𝒙𝒊𝟏 

Defender 2 strategy 

𝒙𝒊𝟐
 

Parameter 

conditions 

Attack decision 

 𝒙𝒂 

1 1 𝑝𝐼𝑣 > 𝑐 1 or 2 with ½ chance 

1 0 𝑝𝐼𝑣 > 𝑐 2 

0 1 𝑝𝐼𝑣 > 𝑐 1 

0 0 𝑝𝑁𝐼𝑣 > 𝑐 1 or 2 with ½ chance 

1 1 𝑝𝐼𝑣 ≤ 𝑐 0 

1 0 𝑝𝑁𝐼𝑣 ≤ 𝑐 0 

0 1 𝑝𝑁𝐼𝑣 ≤ 𝑐 0 

0 0 𝑝𝑁𝐼𝑣 ≤ 𝑐 0 
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3.1.   Case 1: 𝒑𝑵𝑰𝒗 < 𝒄 

This is a trivial case where the attacker will not attack independent of what the defenders do. Hence 

the defenders will have no incentive to invest, and the equilibrium is that defenders do not invest, 

and the attacker does not attack. 

 

3.2.  Case 2: 𝒑𝑰𝒗 < 𝒄 ≤ 𝒑𝑵𝑰𝒗 

In this case, the attack will only attack a defender who does not invest. Hence, the first stage (T1) 

investment stage game has the normal form payoff matrix for the defenders shown in Table 2. It 

is straightforward to verify that if (𝐼/𝑣) ≤ 𝑝𝑁𝐼, (invest, invest) will be an equilibrium. If (𝐼/𝑣) ≥

𝑝𝑁𝐼/2, (not invest, no invest) will be an equilibrium. We also prove that there is no asymmetric 

equilibrium (see Appendix A). The intuition is straight forward. If the investment cost 𝐼 is low 

enough, both defenders investing is an equilibrium. If the investment cost is too high, none of the 

defenders investing is an equilibrium. Note that it is possible, when 𝑝𝑁𝐼/2 ≤ (𝐼/𝑣) ≤ 𝑝𝑁𝐼, there 

are two symmetric equilibriums (both defenders investing/both defenders not investing). Figure 3 

illustrates the structure of the equilibriums. Case 2 is also the most interesting because the attacker 

may not attack contingent on what the defenders do. Hence, we design the experiments around this 

case.  

Table 2.  Payoff for the Defenders in Case 2 (𝒑𝑰𝒗 < 𝒄 ≤ 𝒑𝑵𝑰𝒗) 

D1 | D2 Invest Not Invest 

Invest 𝑣 − 𝐼, 𝑣 − 𝐼 𝑣 − 𝐼, 𝑣(1 − 𝑝𝑁𝐼) 

Not Invest 𝑣(1 − 𝑝𝑁𝐼), 𝑣 − 𝐼 𝑣(1 − 1/2𝑝𝑁𝐼), 𝑣(1 − 1/2𝑝𝑁𝐼) 

 

 

Figure 3. Structure of the Equilibriums for the Defenders 

3.3.  Case 3: 𝒄 ≤ 𝒑𝑰𝒗 

In this case, since the outside option for the attacker is low, he always attacks. Hence, the first 

stage (T1) investment stage game has the normal form payoff matrix for the defenders shown in 

Table 3. Note that the payoff matrix is almost identical to that for case 2, except in the (invest, 
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invest) cell. The difference is that in the case of (invest, invest), the attacker attacks, as opposed to 

not, in case 2. 

Again, there is no asymmetric equilibrium (see Appendix A). The condition for (not invest, 

not invest) to be an equilibrium is the same as in case 2. That is, (𝐼/𝑣) ≥ 𝑝𝑁𝐼/2. However, the 

condition for (invest, invest) to be an equilibrium and changes to (𝐼/𝑣) ≤ 𝑝𝑁𝐼 − 𝑝𝐼/2. Compared 

to case 2, the threshold is lower because the attacker will attack in this case and so the value of 

investment is lower. Since 𝑝𝐼 < 𝑝𝑁𝐼, it is guaranteed that there will be a range of 𝐼/𝑣 where both 

(invest, invest) and (not invest, not invest) are equilibriums.  

Table 3.  Payoff for the Defenders in Case 3 (𝒄 ≤ 𝒑𝑰𝒗) 

D1 | D2 Invest Not Invest 

Invest 𝑣(1 − 1/2𝑝𝐼) − 𝐼, 𝑣(1 − 1/2𝑝𝐼) − 𝐼  𝑣 − 𝐼, 𝑣(1 − 𝑝𝑁𝐼) 

Not Invest 𝑣(1 − 𝑝𝑁𝐼), 𝑣 − 𝐼 𝑣(1 − 1/2𝑝𝑁𝐼), 𝑣(1 − 1/2𝑝𝑁𝐼) 

 

4. Experimental Study 

In this section, we report an experimental study that investigates if and how normative appeals can 

nudge the defenders and mitigate digital extortion attacks. 

 

4.1.  Experimental Design and Setting Calibration  

The model setting is characterized by five parameters (value 𝑣, investment cost 𝐼, probability of 

being compromised with/without investment 𝑝𝐼/𝑝𝑁𝐼 , and the attacker’s outside option 𝑐). In a 

typical test-the-theory study, the design would employ multiple sets of parameters and see if 

behaviors respond, in the predicted manner, to parametric changes. However, the main goal of this 

paper is to study interventions under strategic interactions in the setting of digital extortion. Hence, 

we opt for a different approach. 

We use the game theoretic analysis above as guidance to pick one parametric setting where the 

incentives are representative and deemed close to the real environment. One important parameter 

given in the game theoretical analysis above is the outside option 𝑐 of the attacker. We consider 

that it would be too restrictive to pick an outside option 𝑐 either too high (resulting in no attacking) 

or too low (always attacking regardless of the defenders’ investment). Rather, it is more realistic 

that the attacker shall balance the decision between attack and not attack (Laszka et al., 2017), and 

the investment reduces his incentive to attack. Thus, we pick parameters satisfying 𝑝𝐼𝑣 < 𝑐 ≤

𝑝𝑁𝐼𝑣 , corresponding to case 2 in the game theoretic analysis. The game has two symmetric 
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equilibriums under case 2. In most realistic scenarios, there is a need for investing in security, 

given the trade-offs between potential losses and investment costs. Hence, we decide to choose a 

parameter setting where (invest, invest) is the equilibrium. We also eliminate cases where there 

are multiple equilibriums as not to distract from the main focus of the paper. The condition 

satisfying these two requirements is (𝐼/𝑣) ≤ 𝑝𝑁𝐼/2. 

There are obviously infinite sets of parameters satisfying 𝑝𝐼𝑣 < 𝑐 ≤ 𝑝𝑁𝐼𝑣 and (𝐼/𝑣) < 𝑝𝑁𝐼/2. 

Without loss of generality, we arbitrarily set 𝑣 to 100. We pick 𝑝𝑁𝐼 and 𝑝𝐼 to be 0.8 and 0.3, again 

somewhat arbitrarily but with enough separation that any reasonable individual will agree that 

investment reduces the probability of a successful attack “substantially”. We pick 𝑐 = 40 and 𝐼 =

30 satisfying the conditions with enough room from the boundaries so that the incentives are clear. 

Table 4 summarizes our parameter choices. 

Table 4. Calibration of Experimental Parameters 

Parameter Value in experiment 

𝑣: data value 100 

𝐼: investment cost 30 

𝑝𝑁𝐼: prob of successful attack without investment 0.8 

𝑝𝐼: prob of successful attack with investment 0.3 

𝑐: attacker outside option 40 

 

4.2.  Baseline 

In practice, the community of defenders (i.e. firms, organizations, institutions) does not drastically 

change over time and repeated interactions are realistic. Thus, we use a repeated interaction setting 

in our experiments. That is, the same group subjects in the roles of attacker and defenders play the 

game described above multiple times in an experimental session. We assume a scenario where 

participants are informed of past action of others and past security breaches. In practice, there are 

forums, such as conferences and trade-shows, where companies exchange information about their 

cyber security strategies, and governmental policy dictating the reporting of breaches. While 

clearly not everything a company does, regarding cybersecurity, is made public, we believe our 

experimental design captures the important aspects of the digital extortion scenario. It is certainly 

possible to investigate the role of information in this scenario, but that is beyond the scope of this 

paper. The subjects were also informed, in the beginning of the experiments, that they were going 

to play 30 rounds. Hence, technically, the setting is a finitely repeated game. By backward 

induction, the Nash equilibrium of the one-shot game is the Nash equilibrium of the repeated game. 
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As a result, the game theoretic analysis above applies. We refer to this setting, with parameters in 

Table 4, with 30 rounds of repeated interactions, as the baseline treatment.  

 

4.3 Normative Appeals 

Social norms are often categorized into two types: descriptive norms and injunctive norms 

(Cialdini et al., 1991, Cialdini et al., 1990). Descriptive norms and injunctive norms are both 

important motivators of human behavior. Descriptive norms inform decision makers about the 

popularity of certain behavior. This type of norms guides decision makers by providing 

information about how the majority of others behave. Because decision makers tend to reason “if 

a lot of people are doing this, it’s probably a wise thing to do” (Cialdini, 2007), knowing the 

behavior of others helps decision makers to develop a heuristic for what might be the most effective 

and adaptive. In addition, imitating others’ behavior saves one’s cognitive effort and time.  

Injunctive norms inform decision makers about social approval of certain behavior. This type 

of social norms guides decision makers by providing information about what ought to be done. It 

supplies a reference point for effective and likeable behavior. Decision makers may not want to 

deviate from injunctive norms but engage in norm-congruent behavior to produce liking, seek 

approval, and gain acceptance (Cialdini and Trost, 1998, Griskevicius et al., 2006).   

Social norms could be a powerful tool to change people’s behavior. Though social norms 

usually emerge and can be enforced via repeated interactions (Fehr and Gächter, 2002), 

interventions based on normative appeals in forms of communicating social norms with written 

appeals may be sufficient to guide people’s behavior in desired ways. For example, normative 

appeals were found to be effective in encouraging consumers to engage in sustainable behaviors 

(White and Simpson, 2013), promoting energy conservation (Nolan et al., 2011), increasing social 

marketing (Metcalf et al., 2019). Normative appeals have also been applied in a series of studies 

that increase individual charitable contributions (Croson et al., 2009, Croson and Shang, 2008, 

Shang and Croson, 2009). 

In this study we explore the efficacy of four types of normative appeals: injunctive appeals for 

investing, injunctive appeals for refusing to pay, descriptive appeals for investing, descriptive 

appeals for refusing to pay. In injunctive appeals for investing, we show a message “You should 

invest to reduce the chance of being successfully attacked” when defenders make investment 

decisions. In injunctive appeals for refusing to pay, we show a message “You should not pay the 



 14 

attacker to discourage him from attacking in the future” when the affected defender makes payment 

decisions. In descriptive appeals for investing, we show a message “In a previous session, 

defenders invested 73% of the time” when defenders make investment decisions. In descriptive 

appeals for refusing to pay, we show a message “In a previous session, defenders refused to pay 

the attacker 62% of the time, if successfully attacked” when the affected defender makes payment 

decisions. Appendix D illustrates the screenshots of the treatments. Please note that both 

percentages are calculated based on our prior sessions to avoid deception in experiments. We 

propose that: 

H1: Investment rate is higher with injunctive appeals for investing, compared to the 

baseline treatment. 

H2: Ransom payment rate is lower with injunctive appeals for refusing to pay, compared 

to the baseline treatment. 

H3: Investment rate is higher with descriptive appeals for investing, compared to the 

baseline treatment. 

H4: Ransom payment rate is lower with descriptive appeals for refusing to pay, compared 

to the baseline treatment. 

  

4.5.  Amazon Mechanical Turk Protocol 

We employed standard experimental economics methodology and used no deception. The 

experiments were conducted on Amazon Mechanical Turk (i.e., MTurk), with the SoPHIE 

software (https://www.sophielabs.com). Lee et al. (2018) shows that supply chain experiments 

conducted on MTurk draw the same conclusions as laboratory-based experiments (except one case 

that cannot be replicated both in lab and on MTurk). In addition, MTurk provides a much more 

diverse set of subjects, compared to the typical experiments conducted on university campuses 

where undergraduate students are used as subjects. We chose MTurk as our experimental platform 

because of the ability to recruit more than just undergraduate students as subjects. We restricted 

our subjects’ web portal geographic location to the United States and accepted only high-reputation 

workers (completed more than 100 MTurk tasks with at least 95% approval ratings) as our 

experiment subjects. Many prior MTurk research uses such sample restrictions to ensure high 

quality data (Hauser and Schwarz, 2016, Lee et al., 2018, Peer et al., 2014) . 

https://www.sophielabs.com/
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After joining the experiment, participants were provided with written instructions. To ensure 

all subjects understand the experiment, they were required to pass a quiz, consisting of three 

questions about the rules of the game, before they were allowed to participate. Please see appendix 

C for the written instructions, and quiz questions. To ensure every participant has full information, 

in each stage we showed the data value, the investment cost, and the investment decisions to both 

the defenders and the attacker. In addition, at the payoff stage of each round, there was a summary 

table that showed all the prior decisions. Please refer to Appendix D for experiment screenshots. 

As standard in economics experiments, incentives are controlled by monetary payoffs. Subjects 

were paid according to their performances in the experimental sessions, and a small show-up fee. 

The average payment was $4.3, which is in-line with the earning rates on MTurk.  

 

4.6.  Experimental Results 

Table 5 summarizes game theoretic predictions and decision outcomes under each treatment 

condition. 

Table 5. Summary Statistics of Group Security Outcomes with Different Treatments 

Decision 
Game 

Theory 
Baseline 

Injunctive 

Should 

Invest 

Injunctive 

Should 

Not Pay 

Descriptive  

73%  

Invest 

Descriptive 

62% Not 

Pay 

Number of 

Groups 
N/A 20 20 22 22 22 

Investment 

Rate 
100% 

50.17% 

(28.87%) 

72.58% 

(25.76%) 

42.35% 

(29.92%) 

60.98% 

(29.54%) 

54.17% 

(30.17%) 

Payment Rate 100% 
49.61% 

(25.19%) 

59.30% 

(31.44%) 

31.87% 

(21.85%) 

58.22% 

(28.36%) 

47.49% 

(33.15%) 

Attack Rate 0% 
50.17% 

(40.82%) 

40.50% 

(40.08%) 

39.39% 

(41.84%) 

42.12% 

(42.28%) 

41.67% 

(42.22%) 

Ransoms 100 
66.14 

(12.48) 

58.90 

(7.53) 

53.39 

(12.76) 

64.07 

(12.68) 

58.23  

(9.82) 

Notes:  

1. Standard deviations are reported in parentheses. 

2. All results are significantly (p-value < 0.01) different from the game theory predictions. 

3. Investment rate and attack rate are reported in group average across all periods. 

4. Payment rate is reported in group average across all periods conditioned on successful 

attacks. 

5. Ransoms are reported in group average across all periods conditioned on attack decisions. 

 

We compare the security outcomes of groups in a treatment to those in the baseline using the 

Mann-Whitney test. Note that the unit of analysis is a group, not the decision in a particular round 
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as to ensure independence. That is, for example, when we compare investment rates, we first 

calculate an investment rate for each group over 30 periods made by the two defenders.  We then 

use the Mann-Whitney test to compare the investment rates in the baseline (first sample for the 

test) to those in a treatment (second sample for the test). For the comparison of ransoms, we use 

the average ransom of a group as the unit of analysis, for the same reason.  

 

Observation 1: Investment rate is higher in the treatment of injunctive appeals for investing, but 

not in other treatments, than in the baseline (Table 6).      

Table 6. Investment Rate Comparison (Mann-Whitney test) 

 Mean p-value 

Baseline 50.17%  

Injunctive Should Invest 72.58% 0.010 

Injunctive Should Not Pay 42.35% 0.450 

Descriptive 73% Invest 60.98% 0.178 

Descriptive 62% Not Pay 54.17% 0.614 

 

Observation 2: Payment rate is lower in injunctive appeals for refusing to pay than in baseline, 

but not in other treatments (Table 7).  

Table 7. Payment Rate Comparison (Mann-Whitney test) 

 Mean p-value 

Baseline 49.61%  

Injunctive Should Invest 59.30% 0.175 

Injunctive Should Not Pay 31.87% 0.034 

Descriptive 73% Invest 58.22% 0.169 

Descriptive 62% Not Pay 47.49% 0.880 

 

Observation 3: Attack rate in the treatments is not different from the baseline (Table 8). 

Table 8. Attack Rate Comparison (Mann-Whitney test) 

 Mean p-value 

Baseline 50.17%  

Injunctive Should Invest 40.50% 0.228 

Injunctive Should Not Pay 39.39% 0.137 

Descriptive 73% Invest 42.12% 0.246 

Descriptive 62% Not Pay 41.67% 0.165 

 

Observation 4: The attacker lowers the amount of ransoms in most treatments except descriptive 

appeals for investing than in the baseline (Table 9). In other words, the attack may strategically 

respond to the interventions by reducing the amount of ransoms requested. 
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Table 9. Ransom Comparison (Mann-Whitney test) 

 Mean p-value 

Baseline 66.14  

Injunctive Should Invest 58.90 0.024 

Injunctive Should Not Pay 53.39 0.002 

Descriptive 73% Invest 64.07 0.442 

Descriptive 62% Not Pay 58.23 0.030 

 

Observation 5: Investment decisions of the two defenders in a group are correlated (Table 10). 

As the defenders made their decision simultaneously, the correlation may be due to that both 

defenders could be influenced by (or anchor on) their decisions in prior rounds. We use logit 

regressions to test whether prior investment decisions within the group can affect a defender’s 

current investment decision. The results (Table 11) suggest that a defender may be influenced not 

only by her own prior decision, but also by the other’s decision.  

Table 10. Pearson Correlation of Investment Decisions between Two Defenders  

 Correlation Coefficient p-value 

Base 0.2431 0.000 

Injunctive Invest 0.2545 0.000 

Injunctive Not Pay 0.4154 0.000 

Descriptive Invest 0.3664 0.000 

Descriptive Not Pay 0.3605 0.000 

 

Table 11. Effect of Investment Decisions in the Previous Round on the Current Ones 

 Anchoring past (self) Anchoring past (other) 

Baseline 1.1335 (0.000) 0.4429 (0.020) 

Injunctive Should Invest 1.6099 (0.000) 0.7651 (0.003) 

Injunctive Should Not Pay 1.2224 (0.000) 1.3236 (0.003) 

Descriptive 73% Invest 1.5543 (0.000) 0.6500 (0.002) 

Descriptive 62% Not Pay 1.5381 (0.000) 0.6563 (0.037) 

Notes: p-values are reported in parentheses. 

 

Observation 6: The behaviors of the defenders’ and the attacker’s deviate significantly from game 

theory predictions. We use Wilcoxon tests to compare the observed outcomes to game theory 

predictions. The observed investment, attack and payment rates are significantly (all p-values < 

0.01) lower than 100% by 28% - 68%. The observed ransom decisions are significantly lower than 

100 in the baseline, injunctive, and descriptive social norm treatments (all with p-value < 0.01). It 

is not surprising that game theory does not provide good predictions in our settings, consistent 

with a large volume of past literature.  
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5. Behavior Model and Estimation 

The above analyses show that descriptive appeals are not effective in neither increasing investment 

rate nor reducing payments rate, and injunctive appeals have some impacts on both investment 

rate and ransom payment rate. The reduction of ransoms can be construed as a confirmation that 

the attackers are strategic and can counteract interventions. In other words, even if normative 

appeals do nudge individuals to invest and refuse to pay, the strategy reaction of the attacker of 

lowering the ransom reduces this push and cancels out the impact. However, the above statistical 

analyses cannot fully capture the nuisance of strategic interactions (Observation 4), or control for 

bounded rationality of the defenders (Observation 6). Thus, a more rigorous behavioral model is 

needed to better quantify if the treatments impact the defenders’ motivation to invest and refuse to 

pay.  

 To develop the model, we first introduce three assumptions motivated by direct observations 

and intuitive reasoning 2 . First, decisions were noisy and likely to be boundedly rational 

(Observation 6). We employ the quantal response equilibrium framework (QRE) (Mckelvey and 

Palfrey, 1995, Mckelvey and Palfrey, 1998), popular in the behavioral operations literature. The 

QRE framework assumes individuals evaluate potential decisions imperfectly and make random 

evaluation errors. Hence, the resulting decisions of this process are stochastic. This framework has 

been successfully applied to explain human decisions in many settings including inventory 

management (Li et al., 2019, Su, 2008) , supply chain contracts (Wu and Chen, 2014) , and capacity 

games (Chen et al., 2012). One appealing feature of this framework is that it is straightforward to 

incorporate additional behavioral elements such as fairness (Kalkanci et al., 2011, Li et al., 2019). 

We detail the framework in the next subsection. 

Second, we find substantial correlation between the investment decisions of the two defenders 

and their prior decisions influence the current ones (Observation 5). The most natural way to 

operationalize this observation is to introduce an additional utility into the QRE framework where 

individuals will only receive if they follow a past investment decision, similar to the anchoring 

formulation in Wu and Chen (2014). 

 
2 We also tested the impact of cumulative wealth on the investment and payment decisions. As the effect is not 

consistent nor robust, we decide not to include in the discussion of the main text. 
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Third, we introduce fairness concerns into the payment decision 3 . The ransom-payment 

interaction is similar to that of the ultimatum game (Bornstein and Yaniv, 1998, Slonim and Roth, 

1998). The attacker decides on an amount of ransom, which takes a portion of the data value, akin 

to the proposer splitting the pie in the ultimatum game. The defender then decides if he pays, akin 

to accepting or rejecting in the ultimatum game context. It is well-known that fairness concern is 

the primary behavioral factor in the ultimatum game. We incorporate fairness concerns into the 

QRE framework through the standard inequality aversion formulation, similar to many papers in 

the literature (e.g. Li et al., 2019).  

As our key goal is to demonstrate the treatment effects, we introduce a treatment comparison 

feature into the modeling framework by the use of “dummy utilities”. This allows us to measure 

the behavioral impact of a treatment (e.g. injunctive appeals) even when the strategic interactions 

are complex. We construct this model in a nested fashion so that statistical tests can be used to 

determine which behavioral factors are important. To facilitate the exposition of the modeling 

framework, we begin the discussion with the “vanilla” quantal response equilibrium and describe 

how each additional behavioral factor can be incorporated later. The specific order in which these 

factors are presented has no impact on the final model.  

In addition, we tested a version of a behavioral model with the inclusion of risk aversion. 

However, we find that risk aversion is on the margin of significance. As risk aversion does not 

change the estimates of the parameters and drive the main insights, we do not include risk aversion 

in the main model but report some of this information in appendix H.  

 

5.1.  Quantum Response Equilibrium 

We employ the most common logit-based QRE (Su, 2008) and find the QRE by backward 

induction. The setting consists of multiple decisions and multiple players. For ease of exposition, 

we adopt the following definition conventions. We use 𝑥  for decision variables, 𝑢  for utility 

functions and 𝛾 for bounded rationality parameter, with 𝑝, 𝑟, 𝑎 and 𝑖 to index the ransom payment, 

ransoms, attack and investment decisions, and j = 1 or 2 to index the defender. Hence, let xpj ∈

{0,1} be an indicator variable for the decision to pay, with xpj = 1 if the defender 𝑗 pays the 

ransom, and 0 otherwise, conditioned on a successful attack. Let xr  be the ransom. Let xa ∈

 
3 We thank an anonymous review for the valuable suggestion. 
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{0,1,2} be the attack decision variable, where xa = 0 if the attacker decides not to attack, xa = 1 

if the attacker attacks defender 1, and xa = 2 if the attacker attacks defender 2. Let xij ∈ {0,1} be 

an indicator variable for defender j’s decision to invest, with xij = 1 if defender 𝑗 decides to invest, 

0 otherwise. We assume 𝛾 can be different for different decisions. Hence, let 𝛾p, 𝛾r, 𝛾a and 𝛾i be 

the bounded rationality parameters for ransom payment, ransom amount, attack, and investment 

decisions respectively. We do assume the parameters are homogeneous across individuals, similar 

to past literature (Ho and Zhang, 2008, Lim and Ho, 2007, Su, 2008). Note, again, that, in this 

section, none of the behavioral biases are included in the formulation yet.  

 

5.1.1.  Ransom Payment Decision 

We start with the last possible decision in the game, whether to pay a ransom. The utility for the 

defender j, conditioned on a successful attack, for the ransom payment decision is given by: 

𝑢𝑝(𝑥𝑝𝑗) = (𝑣 − 𝑥𝑟)𝑥𝑝𝑗 − 𝑐𝑖𝑥𝑖𝑗 

where 𝑣 is the data value, and 𝑐𝑖 is the cost of investment. Recall that 𝑣 and 𝑐𝑖 are identical for 

both defenders. Note that the second term −𝑐𝑖𝑥𝑖𝑗 has no impact on the payment decision (𝑥𝑝𝑗) but 

is included for completeness. The probability of paying a ransom is given by: 

𝑃𝑝(𝑥𝑝𝑗 = 1) =
𝑒𝛾𝑝𝑢𝑝(1)

𝑒𝛾𝑝𝑢𝑝(1) + 𝑒𝛾𝑝𝑢𝑝(0)
=

1

1 + 𝑒−𝛾𝑝(𝑣−𝑥𝑟)
 

We use the same convention, for the bounded rationality parameter, as in Wu and Chen (2014) . 

When 𝛾𝑝 = 0, the defender chooses her decision among all possible choices with equal probability, 

with no intelligence whatsoever. When 𝛾 approaches ∞, the defender always selects the choice 

with the highest utility, consistent with rational theory.  

 

5.1.2.  Ransom Decision 

By backward induction, we analyze the ransom decision of the attacker’s next4. The utility of the 

ransom decision, for the attacker, conditioned on attacking defender j, is simply ransom, expected 

over whether it will be paid, given by: 

𝑢(𝑥𝑟) = 𝑥𝑟𝑃𝑝(𝑥𝑝𝑗 = 1) 

 
4 Technically, the ransom decision is made at the same time as the attack decision. So it is possible to analyze them 

as a pair. However, the ransom decision will only “kick in” if the attacker decides to attack. Hence, we analyze them 

as a sequence of two decisions. 
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Note that the quantal response probability of the payment decision, 𝑃𝑝( ), is a function of the 

ransom 𝑥𝑟 and that creates a non-trivial trade-off for the attacker to consider. The quantal response 

probability of choosing a ransom 𝑥𝑟 is given by: 

𝑃𝑟(𝑥𝑟) =
𝑒𝛾𝑟𝑢𝑟(𝑥𝑟)

∑ 𝑒𝛾𝑟𝑢𝑟(𝑥𝑟
′ )

𝑥𝑟
′

 

We restrict 𝑥𝑟 to be between 0 and 𝑣, the value of the data, and that it has to be an integer. 

Note that we are using a discrete formulation because in the experiments, decisions are restricted 

to be integers. Technically, the model can be easily extended to a continuous formulation by 

replacing the summation operation with an integration operation. 

 

5.1.3.  Attack Decision 

Similarly, we formulate the utility of the attack decision, based on the quantal response 

probabilities of the subsequent decisions. In our setting, recall that the probability of a successful 

attack, attacking defender 𝑗, is 𝑝𝑠 = 𝑝0 − 𝑝1𝑥𝑖𝑗. That is, defender 𝑗 can reduce the probability of a 

successful attack by 𝑝1 by investing. The expected utility of the attack decision is given by: 

𝑢𝑎(𝑥𝑎) = {

𝑢𝑎0

(𝑝0 − 𝑝1𝑥𝑖𝑗) ∑ 𝑃𝑟(𝑥𝑟)𝑥𝑟𝑃𝑝(𝑥𝑝𝑗 = 1)

𝑥𝑟

            𝑖𝑓           
𝑥𝑎 = 0

𝑥𝑎 = 1 𝑜𝑟 2
 

where 𝑢𝑎0 is the utility of the outside option if the attacker decides not to attack anyone. Similar 

to the other decisions, the decision probabilities are given by: 

𝑃𝑎(𝑥𝑎) =
𝑒𝛾𝑎𝑢𝑎(𝑥𝑎)

∑ 𝑒𝛾𝑎𝑢𝑎(𝑥𝑎
′ )

𝑥𝑎
′ ∈{0,1,2}

 

 

5.1.4.  Investment Decision 

Investment decisions are made simultaneously by defender 1 and 2. To be clear in our exposition, 

we explicitly use the index 1 and 2 to refer to the two defenders. The utility of defender 1, at this 

stage, is driven by four possible outcomes: the attacker not attacking, the attacker attacking 

defender 2, the attacker attacking defender 1 without success, and the attacker attacking defender 

1 with success. Defender 1 receives 𝑣 − 𝑐𝑖𝑥𝑖1 in the first 3 cases because there is no successful 

attack, and she retains her data value minus her investment costs, if any. In the last case, the utility 

is 𝑃𝑝(𝑥𝑝 = 1)(𝑣 − 𝑥𝑟 − 𝑐𝑖𝑥𝑖1) + (1 − 𝑃𝑝(𝑥𝑝 = 1))(−𝑐𝑖𝑥𝑖1), expected over 𝑥𝑟. This is, it is the 
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expectation between two cases: paying the ransom and receives 𝑣 − 𝑥𝑟 − 𝑐𝑖𝑥𝑖1 or not paying and 

losing the investment cost (𝑐𝑖𝑥𝑖1), if any. Putting all these together, we have: 

𝑢𝑖(𝑥𝑖1, 𝑥𝑖2) = (𝑣 − 𝑐𝑖𝑥𝑖1)(𝑃𝑎(𝑥𝑎 = 0) + 𝑃𝑎(𝑥𝑎 = 2) + 𝑃𝑎(𝑥𝑎 = 1)(1 − (𝑝0 − 𝑝1𝑥𝑖1)))

+ 𝑃𝑎(𝑥𝑎 = 1) {∑ 𝑃𝑟(𝑥𝑟)(𝑃𝑖(𝑥𝑝 = 1)(𝑣 − 𝑥𝑟 − 𝑐𝑖𝑥𝑖1) + 𝑃𝑖(𝑥𝑝 = 0)(−𝑐𝑖𝑥𝑖1))

𝑥𝑟

} 

Note that 𝑢𝑖 is a function of 𝑥𝑖2 since 𝑃𝑎 is a function of 𝑥𝑖2. The utility of defender 2 is given, 

simply, by 𝑢(𝑥𝑖1, 𝑥𝑖2), a permutation of the index of 1 and 2, because the game is symmetric. The 

quantal response equilibrium is given by a fixed point of the distributions of both 𝑥𝑖1 and 𝑥𝑖2, 

satisfying both of the following conditions simultaneously. 

𝑃𝑖1(𝑥𝑖1) =
𝑒𝛾𝑖 ∑ 𝑃𝑖2(𝑥𝑖2)𝑢(𝑥𝑖1,𝑥𝑖2)𝑥𝑖2

∑ 𝑒𝛾𝑖 ∑ 𝑃𝑖2(𝑥𝑖2)𝑢(𝑥𝑖1
′ ,𝑥𝑖2)𝑥𝑖2

𝑥𝑖1
′

 

𝑃𝑖2(𝑥𝑖2) =
𝑒𝛾𝑖 ∑ 𝑃𝑖1(𝑥𝑖1)𝑢(𝑥𝑖2,𝑥𝑖1)𝑥𝑖1

∑ 𝑒𝛾𝑖 ∑ 𝑃𝑖1(𝑥𝑖1)𝑢(𝑥𝑖2
′ ,𝑥𝑖1)𝑥𝑖1

𝑥𝑖2
′

 

Essentially, defender 1 is calculating her utility by taking expectation over defender 2 quantal 

response probabilities and vice versa.  

 

5.2.  Previous Decision Anchoring 

We incorporate past decision anchoring for the investment payment decision, into the model as a 

reduction in investment cost if the individual invests in the last round. That is, if the last decision 

is to invest, it is easier, operationalized by a reduction of perceived cost, to invest in the current 

period. In the experiments, the defender subjects are aware of previous decisions of both defenders. 

Hence, there are two possible anchors and it is an empirical question of whether defenders anchor 

on one, both, and how much. Hence, the anchoring utility is defined as 

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑡𝑟𝑢𝑒 𝑐𝑜𝑠𝑡 − 𝛼𝑚(𝑥 𝑥𝑚) − 𝛼𝑦(𝑥 𝑥𝑦) 

where x is the current investment decision of a defender (1 or 0). 𝑥𝑚 and 𝑥𝑦 are the last period’s 

decision of the same defender and the other defender, respectively. 𝛼𝑚 and 𝛼𝑦 are the respective 

cost reduction the defender would perceive if he invested and the other defender invested in the 

last round. 𝛼𝑚 and 𝛼𝑦 are parameters to be estimated from the data.  
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 Note that we frame the utility change as a cost reduction for convenience of interpreting 𝛼𝑚 

and 𝛼𝑦  as both will be measured in dollars in the same scale as the investment cost. The 

formulation can be reframed as general anchoring utilities.  

 

5.3. Fairness  

We incorporate fairness concerns for the payment decision using the standard inequality aversion 

formulation (e.g. Cui et al., 2007, Li et al., 2019). We incorporate this inequality aversion into the 

utility for the payment decision, as follows: 

𝑢𝑝(𝑥𝑝𝑗) = (𝑣 − 𝑥𝑟 − 𝛼𝑓max (𝑟 − [𝑣 − 𝑟 − 𝑐𝑖𝑥𝑖𝑗], 0))𝑥𝑝𝑗 − 𝑐𝑖𝑥𝑖𝑗 

where 𝛼𝑓max (𝑟 − [𝑣 − 𝑟 − 𝑐𝑖𝑥𝑖𝑗],0) is the standard inequality aversion utility. r, the ransom, is 

what the attacker receives if the defender pays. [𝑣 − 𝑟 − 𝑐𝑖𝑥𝑖𝑗] is what the defender receives. 

Hence, the disutility is the difference between the two5, but only if the attacker receives more. 𝛼𝑓 

is a parameter, to be estimated from data, interpreted as the degree of which the defender cares 

about this inequality. If 𝛼𝑓 = 1, the defender cares about this difference as much as about her own 

payoff. We expected, in general, that 𝛼𝑓  to be less than 1. Intuitively, this inequality aversion 

utility will push the defender not to pay (and hence avoid this disutility) when the ransom is high.  

 

5.4 Treatment Comparison 

To quantify the impact of normative appeals, we introduce a term of dummy utility that measures 

the perceived reduction of cost for a decision in a treatment, referred to as the “treatment effect” 

for a particular decision, into the model. If a treatment is successful, a defender is nudged to invest 

more and it will be as if the perceived cost of investment is lowered, compared to the baseline. The 

difference between this perceived cost and the actual cost can be interpreted as the impact, 

measured in dollars, of the treatment. Alternatively, this perceived decrease in cost can also be 

interpreted as an increase in utility, measured in dollars, of investing caused by the treatment. 

Mathematically both perspectives are equivalent. We arbitrarily decide to use the term “treatment 

effect”. 

 
5In the most general formulation, there is an additional parameter determining the “fairness” split as the split does 

not have to be equal. We opt to use the simpler formulation as in Li et al. 2019 as not to defocus the paper. 

Empirical analysis suggests that this formulation is significant and explains the data.  
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 Note that this “treatment effect” is completely agnostic to how the impact is created. The same 

mathematical formulation is used to measure the 4 treatments (injunctive and descriptive appeals 

for investing, injunctive and descriptive appeals for refusing to pay). Also note that we measure 

the effect of a treatment on both the investing and not-paying decisions as there may be spillover 

effect when appeals for one decision may cause a treatment effect in the other decision. 

 Technically, the treatment effect for investing is formulated as a modification of the equation 

in section 5.2, given by: 

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑡𝑟𝑢𝑒 𝑐𝑜𝑠𝑡 − 𝛼𝑚(𝑥 𝑥𝑚) − 𝛼𝑦(𝑥 𝑥𝑦) − 𝛽𝑖𝑧 

where 𝛽𝑖 is the treatment effect, to be estimated, on investing. 𝑧 is a dummy variable. 𝑧 = 0 for 

baseline and 1 for a given treatment. Note that this model will be estimated with the pooling data 

from the baseline and a treatment. This procedure will be performed for all the treatments (i.e. 

estimating 𝛽𝑖 , the utility increase or perceived cost decrease, of investing, caused by every 

treatment). 

 Similarly, the treatment effect on not-paying is formulated as a modification of the equation in 

section 5.3, given by: 

𝑢𝑝(𝑥𝑝𝑗) = (𝑣 − 𝑥𝑟 − 𝛼𝑓max (𝑟 − [𝑣 − 𝑟 − 𝑐𝑖𝑥𝑖𝑗],0))𝑥𝑝𝑗 − 𝑐𝑖𝑥𝑖𝑗 + 𝛽𝑝(1 − 𝑥𝑝𝑗) 

Similarly, 𝛽𝑝 is the treatment effect, to be estimated, of not-paying and 𝑧 is the same dummy 

where 𝑧 = 0 for baseline and 1 for treatment. The individual will only receive the utility 𝛽𝑝, and 

only in treatment, if s/he chooses 𝑥𝑝𝑗 = 0 (not paying). Note that it is formulated as a straight 

increase in utility but there is an equivalent cost reduction interpretation. 

 

5.5. Model Estimation 

We use the maximum likelihood method to estimate the parameters of the model, given in the 

previous sections. For the base model, there are 7 behavioral parameters, (𝛾𝑝, 𝛾𝑟 , 𝛾𝑎, 𝛾𝑖, 𝛼𝑚, 𝛼𝑦, 𝛼𝑓) 

representing bounded rationality for the four decisions (ransom payment, ransoms, attack and 

investment), decision anchoring, and fairness. Similar to Chen et al. (2012), we assume the 

behavioral parameters are homogeneous across individuals6, and the loglikelihood function is 

 
6 Note that if we were to estimate behavioral parameters for each individual, we would have only 30 rounds of data 

per estimation. Given we have 6 parameters, the statistics will be very weak.  
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simply the sum of the log of the probabilities of each decision. The loglikelihood function is, hence, 

given by: 

𝐿𝐿(𝜃) = ∑ {𝑙𝑜𝑔 (𝑃𝑝(𝑥𝑝𝑗𝑘)) + 𝑙𝑜𝑔(𝑃𝑟(𝑥𝑟𝑘)) + 𝑙𝑜𝑔(𝑃𝑎(𝑥𝑎𝑘)) + 𝑙𝑜𝑔 (𝑃𝑖(𝑥𝑖𝑗𝑘))}

𝑘

 

where 𝜃 = 𝛾𝑝, 𝛾𝑟 , 𝛾𝑎, 𝛾𝑖, 𝛼𝑚, 𝛼𝑦, 𝛼𝑓  are the behavioral parameters, and the decisions 

(𝑥𝑝𝑗𝑘, 𝑥𝑟𝑘, 𝑥𝑎𝑘, 𝑥𝑖𝑗𝑘) have an extra index 𝑘, indexing the particular game.  

 As mentioned in 5.4, we expand the model to include two additional “treatment utilities”, with 

parameters 𝛽𝑖 and 𝛽𝑝 to enable us to measure the impact of manipulation. In this case, we use the 

same maximum likelihood method, with the pooled data from the baseline and a treatment.  

   

5.5.1 Baseline Treatment Estimation Results 

Table 12 summarizes the estimation results for the baseline treatment. We include p-values for 

likelihood ratio tests with the null hypothesis that the parameter is zero. The results show that the 

bounded rationality parameter for all the decisions (𝛾𝑝, 𝛾𝑟 , 𝛾𝑎, 𝛾𝑖, 𝛼𝑚, 𝛼𝑦, 𝛼𝑓 ) are positive and 

significantly different from 0 with p-values of practically zero for all decisions in all treatments. 

This indicates that individuals are responding to incentive and exhibit some level of rationality. It 

is consistent with that decisions deviate substantially from rational game theoretic predictions.  

Table 12: Estimation of the Baseline Model  

Parameter Estimate p-value 

𝛾𝑝: payment bounded rationality 0.0155 0.000 

𝛾𝑟: ransom bounded rationality 0.1389 0.000 

𝛾𝑎: attack bounded rationality 0.0460 0.000 

𝛾𝑖: investment bounded rationality 0.1002 0.000 

𝛼𝑚: anchoring past (self) 22.1573 0.000 

𝛼𝑦: anchoring past (other) 6.3192 0.000 

𝛼𝑓: pay fairness 0.4447 0.000 

 

Past decision anchoring and fairness are highly significant. Past decision anchoring is much 

stronger for the defender’s own decision, compared to the other defender’s decision, consistent 

with the intuition that the defender’s own past decision is more salient, as an anchor, compared 

to the other defender’s past decision. Please see appendix E for the estimation results under the 

condition of injunctive and descriptive appeals. All results are consistent with the baseline 

model. 
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5.5.2 The Effect of Normative Appeals 

Pairwise comparisons were performed (Table 13), using the formulation in section 5.4. Data from 

the baseline and a compared treatment are pooled for the estimation. Recall that the estimates 𝛽𝑖 

and 𝛽𝑝  are the additional utilities for the investing and not-paying decisions caused by the 

treatments.   

Table 13. Comparisons Between Treatments and Baseline 

comparison to Base Should Invest Should Not Pay 73% Invest 62% Not Pay 

Parameter 
Estimate 

(P-value) 

Estimate 

(P-value) 

Estimate 

(P-value) 

Estimate 

(P-value) 

𝛾𝑝: payment 

bounded rationality 

0.0253 

(0.000) 

0.0193  

(0.000) 

0.0258 

(0.000) 

0.0224 

(0.000) 

𝛾𝑟: ransom bounded 

rationality 

0.1354 

(0.000) 

0.1434  

(0.000) 

0.1036 

(0.000) 

0.1545 

(0.000) 

𝛾𝑎: attack bounded 

rationality 

0.0579 

(0.000) 

0.0455  

(0.000) 

0.0665 

(0.000) 

0.0502 

(0.000) 

𝛾𝑖: investment 

bounded rationality 

0.0746 

(0.000) 

0.0828  

(0.000) 

0.0746 

(0.000) 

0.0839 

(0.000) 

𝛼𝑚: anchoring past 

(self) 

33.8596 

(0.000) 

30.9664  

(0.000) 

32.4527 

(0.000) 

34.0986 

(0.000) 

𝛼𝑦: anchoring past 

(other) 

9.8161 

(0.000) 

12.0928 

 (0.000) 

11.1252 

(0.000) 

9.2221 

(0.000) 

𝛼𝑓: pay fairness 
0.2799 

(0.000) 

0.3813  

(0.000) 

0.2064 

(0.000) 

0.3328 

(0.000) 

𝛽𝑖: treatment utility 

(invest) 

7.4179 

(0.000) 

-1.0612 

 (0.408) 

3.0436 

(0.023) 

1.4766 

(0.246) 

𝛽𝑝: treatment utility 

(not-pay) 

8.1731 

(0.044) 

55.7807  

(0.000) 

-2.2156 

(0.553) 

23.2035 

(0.000) 

 

Result 1: Both injunctive and descriptive appeals increase the utility of investing. 

The 𝛽𝑖  parameter is positive and significant for both the “should invest” treatment (p-value 

practically 0) and “73% invest” treatment (p-value = 0.023). In the case of injunctive appeals 

(“should invest”), the 𝛽𝑖  estimate is 7.41, which can be interpreted as a perceived decrease in 

investment cost. Compared to the real cost of 30, it is roughly a 25% impact. In the case of 

descriptive appeals (“should invest”), the 𝛽𝑖 estimate is 3.04, roughly a 10% impact.    

 

Result 2: Both injunctive and descriptive appeals increase the utility of not-paying.  
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The 𝛽𝑝  parameter is positive and significant for both the “should not pay” treatment (p-value 

practically 0) and “62% not-pay” treatment (p-value practically 0). The estimates of the utility 

change in both treatments are high (55.78 and 23.20 respectively) as a fraction of the data value of 

100.  

 

Result 3: Injunctive appeals for investing has a spill-over effect to increase the utility of not-

paying.  

The 𝛽𝑝 parameter is positive and significant for the “should invest” treatment (p-value = 0.044). 

But the estimate is much smaller than that in the comparison for “should not pay” and “62% not 

pay” treatments. Using an injunctive social norm to manipulate the utility of investing may have a 

spill-over effect of increasing the utility of not-paying ransoms. We speculate that the increase in 

investment rate in the “should invest” treatment, compared to that of the baseline, results in a 

variation of mental accounting where the defender is unwilling to pay “more” given that she has 

already invested.  

From the above analyses, we see normative appeals do nudge the defenders to the desired 

directions. However, for some treatments, we fail to see that they significantly increase investment 

rate (Observation 1), and/or reduce payment rate (Observation 2). There could be two possible 

reasons. First, the nudging effect is too weak to be detected statistically given the defenders’ noisy 

decision-making behaviors. The failure of “73% invest” in increasing investment rate (Observation 

1) and the failure of “should invest” in reducing payment rate significantly may be due to this 

reason (Observation 2). Second, the nudging effect may be mitigated by the attacker with lowering 

ransoms. Such strategic reactions from attackers were found for the treatments of “should invest”, 

“should not pay”, “62% not pay”. Only “should not pay” presents a significant reduction of 

payment rate. The results suggest the challenges in coping with digital extortion. While 

interventions may be successful in increasing a decision maker’s utility of investing, or utility of 

not-paying ransoms, their impacts can be mitigated with the attacker reducing ransoms or 

overshadowed by noisy decision-making behaviors. 

 

5.6. Implications on Security Outcomes 

The behavioral model, incorporating bounded rationality, fairness and past-decision anchoring, is 

designed to track strategic interactions and explain the main empirical conclusion: normative 
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appeals may increase the treatment utilities of investing and not-paying, all else equal. In this 

section, we are to establish a clear picture of how the change of these treatment utilities impact the 

four security outcomes of a community: investment rate, attack rate, ransoms requested, and 

payment rate, by numerical analyses. Specifically, we use the parameters from the baseline 

estimation reported in Table 12, except the treatment utilities of both investing and not-paying. 

We run the model using a range of treatment utilities to track how the security outcomes change 

as a result of the changes in one of treatment utilities while holding the other to be 0. We plot 

expected ransom, attack rate, investment rate, and payment rate as a function of the two treatment 

utilities (two separate lines) as shown in Figure 4. The behavioral model provides direct 

calculations of the probabilities of investing, attacking, and not-paying (Section 5.1.1, 5.1.3, and 

5.1.4). It also provides a probability distribution (Section 5.1.2) for ransom amounts, as opposed 

to a single point prediction. Hence, we plot the expected ransom in Figure 4. Table 14 summarizes 

our main findings.  

Note that these results are completely agnostic to the specifics of the manipulation as long as 

the manipulation increases the utilities of investing and/or not-paying, and that the attacker is 

aware of the manipulation. For this reason, the results can be applied to other types of 

manipulations (e.g. direct incentives, peer pressure). While we can measure the strength, by the 

use of the treatment utility formulation, of interventions, it is out of the scope of the paper to 

provide a theory of how specific interventions result into different levels of treatment utilities.   

Table 14. Results of Numerical Analyses 

Player Decision Treatment Utility of 

Investing Increases  

Treatment Utility of Not-

Paying Increases 

Attacker Ransoms decreases moderately decreases considerably 

Attack Rate decreases moderately decreases slightly 

Defenders Investment Rate Increases considerably decreases slightly 

Payment Rate almost no change decreases slightly 
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Figure 4. Response of Security Outcomes to the Change of Utilities 

5.6.1 Ransoms  

The model predicts that the attacker reduces the ransom in response to the increase of both utilities. 

When the treatment utility of not-paying increases, the ransom decreases. Intuitively, the attacker 

is compensating for a higher utility of not-paying. When the treatment utility of investing increases, 

the ransom decreases, although at a lower rate, compared to the effect of the treatment utility of 

not-paying. Note that the investing decision is made before the ransom decision. So how can the 

treatment utility of investing affect the expected ransom? The explanation of this conundrum lies 

in the interactions of fairness and social norm manipulations. First, the expected ransom 

conditioned on investing is lower than that conditioned on not-investing. The reason is that if the 
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defender invested, his payoff will be reduced by the investment cost, and he will feel “less fair” 

for the same level of ransoms, compared to the case if he did not invest. Knowing this, the attacker 

will adjust the ransom down to compensate. Second, when the treatment utility of investing 

increases, the probability to be in the case of investing, as opposed to not-investing, is higher. Thus, 

the ransom, expected over all quantal response equilibrium distributions, including that for the 

investment decision, is lower. This impact is based on an indirect effect through fairness. Hence, 

it is weaker than the manipulation of the utility of not-paying.  

 

5.6.2. Attack Rate  

The model predicts that attack rate only decreases slightly when the treatment utility of investing 

or that of not-paying increases. This may be because the outside option is not appealing even 

compared with a reduced ransom. Attack rate is more likely to be decreased for a higher treatment 

utility of investing than for a higher treatment utility of not-paying. This may be because the 

increased difficulty in compromising a target are more likely to drive the attacker to take outside 

options. However, we do not find the attack rate in the treatments lower significantly than the 

baseline. 

  

5.6.3. Investment Rate 

As expected, the model predicts that, when the treatment utility of investing increases, investment 

rate increases. When the treatment utility of not-paying increases, the model predicts a small 

decrease in investment rate. The reason is that the ransom is significantly reduced, as demonstrated 

in the last section. Hence, the expected loss is lower and the need to invest is lower. However, this 

effect is small, and we do not observe any significant change of investment rate when we have 

normative and descriptive appeals for not-paying.  

 

5.6.4. Payment Rate 

Finally, we illustrate how payment rate changes with manipulations. As the treatment utility of 

not-paying increases, payment rate decreases, but only slightly. The reason is that the ransom 

decreases substantially. We did observe this slight, but significant effect, in the “should not pay” 

treatment. In the “62% not pay” treatment, this effect is too small to be significant. But we observe 

a significant drop in ransoms in both treatments. The treatment utility of investing has an almost 
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undetectable impact on payment rate and we did not find a significant change of payment rate with 

normative and descriptive appeals for investing. Note that result 3, stating that injunctive appeals 

for investing has a spill-over effect to increase the utility of not-paying, seemingly contradicts this 

finding. To clarify, result 3 is about the increase of treatment utility for not-paying when injunctive 

appeals for investing are used as an intervention. This finding is about how the treatment utility of 

investing impacts payment rate, a security outcome of a community.  

 

6. Alternative Interventions  

As mentioned previously, the analyses above are agnostic of how the manipulation of the utilities 

of investing and not-paying are achieved, but only predicts how security outcomes change with 

these utilities of the defenders. To further explore possible manipulations of utilities, we 

investigate two alternative interventions other than normative appeals employed in the main 

treatments.  

The first is a manipulation of direct incentives where we introduce a penalty for ransom 

payment. We expect a direct penalty to increase the utility of not-paying ransoms (i.e. increase the 

treatment utility of not-paying). According to the model analysis in the previous section, we 

anticipate a substantial decrease in ransoms, and all other security outcomes (investment rate, 

attack rate and payment rate) either remain unchanged or decrease slightly. 

The second is a “chat” treatment where we manipulate social interactions between the two 

defenders. That is, we allow the defenders to have free-form communications before they make 

investment decisions. A comprehensive analysis of costless communication, or cheap talk, can be 

found in a number of studies (Farrell, 1987, Farrell and Gibbons, 1988, Rabin, 1990, Rabin, 1994). 

We posit that cheap talk is a means to deliver players’ intentions and thereby improve coordination 

for both investment and ransom payment decisions. Communication allows defenders to exchange 

reasoning for their actions and influence each other. We summarize the major findings in this 

section. Please see Appendix G for details including summary statistics and the model estimation 

results of these treatments. 

 

6.1 Penalty Treatment 

We set the penalty of paying a ransom, in this treatment, to be 15% of the data value. We employ 

the model outline in Section 5.4 to estimate the impact of the intervention. Table 15 summarizes 
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the estimation results. The penalty intervention significantly increases the utility of not-paying. 

The 𝛽𝑝 parameter is positive and significant, with a p-value less than 0.001. Note that, in this case, 

the treatment utility of not-paying should be interpreted as the additional mental cost of paying a 

ransom, in addition to the actual monetary penalty included in the utility calculation explicitly as 

a cost in the model. This is consistent with the interpretation that the penalty itself, which is 

communicated as such to the subjects, is viewed with a negative connotation and further increases 

the utility of not-paying ransoms, on top of the actual monetary incentive. The penalty intervention 

has no impact on the utility of investing. The 𝛽𝑖 parameter is not significantly different from 0 with 

a p-value of 12.9%. This is in-line with our expectation that a penalty of paying ransom has no 

direct impact on the utility of investing. 

Table 15. Comparison between Penalty Treatment and Baseline 

comparison to Base Penalty 

Parameter Estimate (P-value) 

𝛾𝑝: payment bounded rationality 0.0237 (0.000) 

𝛾𝑟: ransom bounded rationality 0.1435 (0.000) 

𝛾𝑎: attack bounded rationality 0.0511 (0.000) 

𝛾𝑖: investment bounded rationality 0.0739 (0.000) 

𝛼𝑚: anchoring past (self) 29.6958 (0.000) 

𝛼𝑦: anchoring past (other) 13.8246 (0.000) 

𝛼𝑓: pay fairness 0.3030 (0.000) 

𝛽𝑖: treatment utility (invest) 2.0731 (0.129) 

𝛽𝑝: treatment utility (not-pay) 13.3767 (0.001) 

 

 Analyses in section 5.6.1 suggest that an increase in treatment utility of not-paying should be 

accompanying a decrease in ransoms. Indeed, as shown in Appendix G, we find the ransom is 

significantly lower, with a p-value of less than 0.01, than the baseline. The other security outcomes 

(investment rate, attack rate and payment rate) are not significantly different from the baseline, 

consistent with the model analysis.  

   

6.2 Chat Treatment 

We believe that communication has the potential to improve coordination and increase 

understanding of the decision problems. However, as opposed to the penalty intervention, there is 

less theoretical guidance of whether and how enabling communication will impact one or both of 
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the treatment utilities. Note that all communication in this scenario is cheap-talk, as there is no 

enforcement mechanism for any intentions or suggestions that are communicated.  

 The model formulation in section 5.4 is designed to isolate the impact of a treatment 

intervention, compared to the baseline, which is adequate in all previous analysis. In this case, 

however, we also observe the actual content of the communication (i.e. text sent by subjects). We 

develop a variation of the behavioral model for treatment comparison to incorporate this additional 

information with the goal to determine whether the content is important in addition to the general 

ability to communicate for nudging a decision maker’s utility to act.  

  In particular, we create a pair of new indicator variables 𝑦𝑖  and 𝑦𝑝 , where 𝑦𝑖/𝑦𝑝 = 1  if 

investment/payment is mentioned in the particular round by either defender 1 or defender 2. We 

opt to employ this simpler approach, as opposed to a full text mining analysis, because the 

messages are generally short, and that we are only interested in the two decisions. We set these 

indicator variables by looking for specific, pre-determined, words such as “invest” and 

“investment” (see Appendix F for examples of chatting messages). We refer to these two variables 

as chat content variables. Please see Table 17 for the frequencies of these words mentioned. Recall 

that treatment utility formulations, defined in section 5.4 is as follows. 

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑡𝑟𝑢𝑒 𝑐𝑜𝑠𝑡 − 𝛼𝑚𝑒(𝑥 𝑥𝑚𝑒) − 𝛼𝑦𝑜𝑢(𝑥 𝑥𝑦𝑜𝑢) − 𝛽𝑖𝑧 

𝑢𝑝(𝑥𝑝𝑗) = (𝑣 − 𝑥𝑟 − 𝛼𝑓max (𝑟 − [𝑣 − 𝑟 − 𝑐𝑖𝑥𝑖𝑗],0))𝑥𝑝𝑗 − 𝑐𝑖𝑥𝑖𝑗 + 𝛽𝑝(1 − 𝑥𝑝𝑗)𝑧 

We re-formulate 𝛽𝑖  and 𝛽𝑝  to (𝛽𝑖 + Δ𝑖𝑦𝑖) and (𝛽𝑝 + Δ𝑝𝑦𝑝) respectively. Hence, the above 

equations become: 

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = 𝑡𝑟𝑢𝑒 𝑐𝑜𝑠𝑡 − 𝛼𝑚𝑒(𝑥 𝑥𝑚𝑒) − 𝛼𝑦𝑜𝑢(𝑥 𝑥𝑦𝑜𝑢) − (𝛽𝑖 + Δ𝑖𝑦𝑖)𝑧 

𝑢𝑝(𝑥𝑝𝑗) = (𝑣 − 𝑥𝑟 − 𝛼𝑓max (𝑟 − [𝑣 − 𝑟 − 𝑐𝑖𝑥𝑖𝑗],0))𝑥𝑝𝑗 − 𝑐𝑖𝑥𝑖𝑗 + (𝛽𝑝 + Δ𝑝𝑦𝑝)(1 − 𝑥𝑝𝑗)𝑧 

The interpretation is that the respective utilities are changed by 𝛽𝑖 and 𝛽𝑝 in the treatment (when 

z=1), and further changed by Δ𝑖 and Δ𝑝 if certain words are mentioned during the chat session. 

Please see Table 16 for the estimates.  

We conclude that indeed communication has an impact on the utility of investing, but only if 

investment is discussed. 𝛽𝑖  is not significant but Δ𝑖  is highly significant with a p-value of 

practically 0. We also find that investment rate, in the rounds where investment is discussed, is 

significantly higher than investment rate in the baseline (74.63% vs 50.17%) with a p-value of less 

than 1% (please see appendix G for the relevant statistics). Furthermore, this difference goes away 
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if we compare the overall investment rate of the chat treatment with that of the baseline. This is 

strong evidence that communication matters, but only when the discussion is relevant.  

Table 16. Comparison between Chat Treatment and 

Baseline 

comparison to Base Chat 

Parameter Estimate (P-value) 

𝛾𝑝: payment bounded rationality 0.0177 (0.000) 

𝛾𝑟: ransom bounded rationality 0.1675 (0.000) 

𝛾𝑎: attack bounded rationality 0.0521 (0.000) 

𝛾𝑖: investment bounded rationality 0.0840 (0.000) 

𝛼𝑚: anchoring past (self) 30.8140 (0.000) 

𝛼𝑦: anchoring past (other) 11.7297 (0.000) 

𝛼𝑓: pay fairness 0.4233 (0.000) 

𝛽𝑖: treatment utility (invest) -0.4463 (0.735) 

𝛽𝑝: treatment utility (not-pay) 12.3924(0.023) 

Δ𝑖: chat invest 14.8104 (0.000) 

Δ𝑝: chat pay 10.0757 (0.583) 

 

In addition, we find an increase in the utility of not-paying which does not depend on whether 

“paying” is discussed. 𝛽𝑝  is significant with a p-value of 0.023 but Δ𝑝  is not significant. We 

speculate that, as 75% of the infrequent ransom payment discussion occurred in the first half of 

the experiment, the impact of discussions, in this case, persisted throughout the session. 

Empirically, we find no evidence of a change in the ransom or ransom payment rate. That is not 

outside of our expectation as we observe a significant amount of decision noise.  

Finally, we find that relevant discussions take place only in a minority of the rounds (Table 

17). While communication seems to have improved investment in the right circumstances, these 

results, taken in total, point to a concern of this approach. Namely, there is a lack of control of 

what is discussed, even when discussion can improve decision-making. 

Table 17. Message Frequency in Chat Treatment 

Message Content # of Messages  Percentage 

Investment 134 21.54% 

Ransom Payment 27 4.34% 

None of them7 461 74.12% 

 

 
7 “None of them” means the defenders mentioned neither investment nor ransom payment, but may be something 

else at the round. 
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In response to this treatment, we find the attacker neither lower the ransom nor change the 

attack compared with the baseline (Appendix G). We also did not find a drop of payment rate. 

Neither do we detect an increase of investment rate overall. The results may be caused by the low 

number of rounds with relevant communications.  

 

7. Discussion and Conclusion 

This study investigates how we can incentivize the defenders to adopt their strategies of mitigating 

digital extortion: investing and refusing to pay ransoms, through the lens of behavioral game theory. 

We are among the first to shed light on coping with digital extortion, employing a combination of 

game theory, human-subject experimentation, behavioral modeling, and numerical analyses.  

We have three main findings. First, normative appeals influence a defender to invest in 

information security and to refuse to pay ransom. Specifically, we find that the defender enjoys a 

significantly positive utility if she conforms to normative appeals. Different interventions result in 

different levels of utility impacts on investing and not-paying. Some may have a stronger impact 

on investing, while others on not-paying.  

Second, the attacker strategically responds to the interventions we apply on the defenders by 

lowering ransoms. We observe such responses in both normative appeals and penalty for payment. 

Numerical analyses show when the defenders’ utility of not-paying increases, that the attacker 

lowers ransoms considerably and attack rate slightly. When the defenders’ utility of investing 

increases, the attack lowers both ransoms and attack rate very slightly. Ransoms are more likely 

to be decreased for utility of not-paying, while attack rate is more likely to be decreased for utility 

of investing. 

Third, while interventions may be successful in increasing the utility of investing, or reduce 

the utility of not-paying, their impacts can be mitigated with the attacker reducing ransoms or 

overshadowed by noisy decision-making behaviors. Thus, it may be difficult for an intervention 

to significantly boost investment rate and lower payment rate. The study suggests potential 

approaches, but also identifies challenges, for fighting against digital extortion for policy makers.  

 The study also makes methodological contributions. It introduces a methodological 

framework to utilize game theory and behavioral experiments to the context of information 

security and to study digital extortion. It makes the first endeavor to empirically explore strategic 

interactions between defenders and attackers in the context of information security with human 
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subject experimentation. In addition, the behavioral model developed in this paper provides a 

venue to estimate the impact of interventions, even when the strategic interactions are complex. 

Furthermore, numerical analyses based on the behavioral model help generalize the qualitative 

findings in terms of how the security outcomes of a community in terms of expected ransom, attack 

rate, investment rate, and payment rate change with the utilities of investing and not-paying.   

From a managerial and policy-making perspective, this study suggests that some interventions 

may not have enough impacts to change investment rate and payment rate of a community 

significantly, particularly when attackers can influence the will of the defenders by lowering 

ransoms and when the defenders are bounded rational. Our study explores strategies leveraging 

normative appeals as a motivator. In practice, industry forums, special interest groups, and other 

relevant organizations can be employed to raise awareness of the threat of digital extortion and 

provide a place for organizations to exchange information about their solution approaches. These 

activities can be designed around building a community to support social norms of adopting and 

investing in effective mitigation strategies, as well as refusing to pay attackers. However, building 

a community that encourages adhering to social norms is not enough. A full solution also requires 

the right social norms to be established. In our study, subjects can easily find “right” social norms 

because their actions are limited (to binary decisions). In practice, there are multiple mitigation 

strategies, and defenders need to be able to coordinate on the right one(s). One possibility is to 

cherry-pick “good behaviors” that naturally arises and frame that as social norms. A practical 

example is to create forums that showcase successes in how mitigation strategies thwart attacks. 

Other organizations may follow suit, and the practice can snow-ball into a standard that the 

community is willing to follow.  

Much of the study is focused on how to prevent successful attacks by either investing or 

reducing attackers’ incentive by not-paying ransoms, and rightfully-so. However, from an 

economics perspective, the issue is not so much of whether there is a successful digital extortion 

attack, but the size of the pecuniary loss. While most of the interventions we studied do not increase 

investment nor reduce attack rate significantly, they do reduce ransoms. In this regard, we can 

claim that these interventions are more “successful” than they appear to be. Ultimately, there is a 

broader question of how to value the trade-off between investing a lot into information security 

and paying the “bad guys” a little to make them go away. Do we absolutely not negotiate with 

cyber “terrorists” or it is okay to pay them a little as long as the ransom is small enough? As this 
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question is more philosophical than scientific, it is beyond the scope of this paper and we will 

leave it for the readers to ponder.  

The study is not without limitations. As one of the first studies to examine digital extortion via 

a behavioral game theory approach, we opt for a simple design as to zero in on the key principles 

of the interactions between strategic considerations and social forces. Hence, some nuances in real 

world scenarios are not fully explored. For example, we assume a full information game where all 

the relevant parameters such as payoffs, effectiveness of security investments and attacker outside 

options are known to all players when substantial asymmetric information may exist. Another 

example is that defenders are assumed to be identical where they are heterogeneous in security 

investment costs/effectiveness, and the value of their data. We also limit the study to focus on few 

salient interventions (chat and penalty) without fully exploring all possibilities. For example, we 

did not explore subsidies for security investment nor reporting requirements for breaches. From a 

methodological perspective, the study relies on controlled experiments and mathematical 

modeling. While these techniques are common practices in many areas of business research, it is 

still not the same as field experiments where the contexts are real, and participants have domain 

knowledge and experiences. 

The limitations of the study suggest future extensions, along three directions. The first is to 

investigate how setting characteristics such as the asymmetry of the defenders, information 

structure, and externalities in security investments, can affect our conclusions. The second is to 

study an expanded set of interventions. This second direction can be fertile ground for multiple 

research studies. It can be subdivided into multiple types. One such type is social interaction-based 

intervention, such as positive/negative social interaction manipulation, and combining multiple 

interventions such as communication (chat) and social interaction manipulation. Another type is 

the direct incentive-based intervention. There are a wide range of untested possibilities. 

Leaderboard, which leverages the need to compete, is one example. Social and incentive-based 

interventions may enhance the effects of one another, and combinations should also be considered. 

Finally, field tests and empirical studies, with the right data, can provide a link between our results 

and real-world practices. 
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Appendix A. Proof of no asymmetric equilibrium in Case 2 and Case 3 

The asymmetric equilibrium means that (Invest, Not Invest) or (Not Invest, Invest) is the 

equilibrium. 

 

B.1. Case 2 

We firstly assume asymmetric equilibrium (Invest, Not Invest) exists. For this equilibrium to exist, 

D1 need to choose Invest as his best response and D2 need to choose Not Invest as his best response. 

If Invest is the best response for D1, then the following condition need to be satisfied: 

{
𝑣 − 𝐼 > 𝑣(1 − 𝑝𝑁𝐼)

𝑣 − 𝐼 > 𝑣(1 −
1

2
𝑝𝑁𝐼)

 

Solve the above formula we get the condition that Invest is the best response of D1:  

𝐼

𝑣
<

1

2
𝑝𝑁𝐼 

If Not Invest is the best response for D2, then the following condition need to be satisfied: 

{
𝑣 − 𝐼 < 𝑣(1 − 𝑝𝑁𝐼)

𝑣 − 𝐼 < 𝑣 (1 −
1

2
𝑝𝑁𝐼)

 

Solve the above formula we get the condition that Not Invest is the best response for D2: 

𝐼

𝑣
> 𝑝𝑁𝐼 

Therefore, together we get that, in order to have (Invest, Not Invest) as the equilibrium, the 

following condition (3) and (6) need to be satisfied: 

{

𝐼

𝑣
<

1

2
𝑝𝑁𝐼

𝐼

𝑣
> 𝑝𝑁𝐼

 

The above condition (3) and condition (6) are impossible to satisfy at the same time. So the 

asymmetric equilibrium (Invest, Not Invest) does not exist. 

Using the similar process, we can prove that there is no asymmetric equilibrium (Not Invest, Invest) 

exits. 

In conclusion, there is no asymmetric equilibrium that exists in case 2. 

 

B.2. Case 3 
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We firstly assume asymmetric equilibrium (Not Invest, Invest) exists. For this equilibrium to exist, 

D1 need to choose Not Invest as his best response and D2 need to choose Invest as his best response. 

If Not Invest is the best response for D1, then the following condition need to be satisfied: 

{
𝑣 (1 −

1

2
𝑝𝐼) − 𝐼 < 𝑣(1 − 𝑝𝑁𝐼)

𝑣 − 𝐼 < 𝑣(1 −
1

2
𝑝𝑁𝐼)

 

Solve the above formula we get the condition that Not Invest is the best response of D1:  

𝐼

𝑣
> 𝑝𝑁𝐼 −

1

2
𝑝𝐼 

If Invest is the best response for D2, then the following condition need to be satisfied: 

{
𝑣 (1 −

1

2
𝑝𝐼) − 𝐼 > 𝑣(1 − 𝑝𝑁𝐼)

𝑣 − 𝐼 > 𝑣(1 −
1

2
𝑝𝑁𝐼)

 

Solve the above formula we get the condition that Invest is the best response for D2: 

𝐼

𝑣
<

1

2
𝑝𝑁𝐼 

Therefore, together we get that, in order to have (Invest, Not Invest) as the equilibrium, the 

following condition (9) and (12) need to be satisfied: 

{

𝐼

𝑣
> 𝑝𝑁𝐼 −

1

2
𝑝𝐼

𝐼

𝑣
<

1

2
𝑝𝑁𝐼

 

∵ 𝑝𝑁𝐼 > 𝑝𝐼 ∴ 𝑝𝑁𝐼 −
1

2
𝑝𝐼 >

1

2
𝑝𝑁𝐼 

The above condition (9) and condition (12) are impossible to satisfy at the same time. So the 

asymmetric equilibrium (Not Invest, Invest) does not exist. 

Using the similar process, we can prove that there is no asymmetric equilibrium (Invest, Not Invest) 

exits. 

In conclusion, there is no asymmetric equilibrium that exists in case 3. 
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Appendix B. Equilibrium with a monetary penalty  

In case 2, the equilibrium strategies for the defenders are either (invest-invest) or (no invest – no 

invest): 

In the invest-invest case, the attacker never attacks, so we don’t have to consider the penalty 

situation.  

In the no invest-no invest case, the attacker always attacks, and asks for a ransom. The affected 

defender needs to decide whether to pay the ransom or not.  

D1 | D2 Invest Not Invest 

Invest 𝑣 − 𝐼, 𝑣 − 𝐼 𝑣 − 𝐼, 𝑣 − 𝑝𝑁𝐼(𝑣 − 𝑝𝑝𝑎𝑦(𝑣 − 𝑟 − 𝑓)) 

Not Invest 𝑣 − 𝑝𝑁𝐼(𝑣 − 𝑝𝑝𝑎𝑦(𝑣 − 𝑟 − 𝑓)), 𝑣 − 𝐼 𝑣 −
1

2
𝑝𝑁𝐼(𝑣 − 𝑝𝑝𝑎𝑦(𝑣 − 𝑟 − 𝑓)) 

 

If 𝑝𝑝𝑎𝑦 = 1, which means 𝑣 − 𝑟 − 𝑓 ≥ 0, so 𝑓 ≤ 𝑣 − 𝑟, the defender’s utility become 

𝑣 −
1

2
𝑝𝑁𝐼(𝑣) 

If 𝑝𝑝𝑎𝑦 = 0, which means 𝑣 − 𝑟 − 𝑓 < 0, so 𝑓 > 𝑣 − 𝑟, the defender’s utility become 

1

2
𝑣 

Since 𝑝𝑁𝐼 ≤ 1, the affected defender should always pay the ransom if 𝑓 ≤ 𝑣 − 𝑟. 
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Appendix C. MTurk Experiment instruction and quiz 

Instruction-Background Information 

This is an experiment in ransomware and protection investment. If you follow the instructions 

carefully and make good decisions, you may earn a considerable amount of money that will be 

paid to you in cash at the end of the experiment. You have already earned US$1 show-up fee for 

participating. You will earn experimental dollars during the experiments, and experimental dollars 

will be converted to US dollars at the end of the experiment with the following exchange rate. 

1,000 experimental dollars = US$1 

You will receive the show up fee ($1) and any additional earnings ONLY if you finish the 

experiment.  

In this experiment, there are three players: Attacker, Defender 1, and Defender 2. During the 

experiment, you will be randomly assigned to be the Attacker, the Defender 1, or the Defender 2. 

You will play the same role for the entire experiment. In total, you are going to play 30 rounds. In 

the first round, you will be randomly paired up with other players to form a 1 attacker- 2 Defenders 

group to play the game. You will stay in the same group for the entire experiment.  

Data Value 

In each round, each Defender is given a “data value” of 100 experimental dollars. The defender 

will receive these 100 experimental dollars at the end of each period if this data value is not lost. 

Ransomware Attack 

In each round, the Attacker chooses one of three options: (a) attack Defender 1; (b) attack Defender 

2; (c) do not attack. If the Attacker chooses to attack a Defender, he/she also decides a ransom to 

ask. 

The Attacker’s probability of being successful is 80%. A defender can reduce the probability to 

30% by spending 30 experimental dollars to make a protection investment.  

If the attack is successful, the affected Defender chooses whether to pay the ransom. If the 

Defender decides to pay, he/she will not lose his/her data value and the Attacker receives the 

ransom for the round. If the Defender decides NOT to pay the ransom, the Defender loses his/her 

data value and the Attacker receives nothing for the round.  

If the Attacker decides not to attack, the Attacker receives a fixed payment of 40 experimental 

dollars for the round.  

Protection Investment 
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Protection Investment can reduce the Attacker’s probability of being successful from 80% to 30%. 

That is, if a Defender who made protection investment is attacked, the Attacker’s probability of 

being successful is 30%. If a Defender who did not make protection investment is attacked, the 

Attacker’s probability of being successful is 80%. If a Defender decides to invest, a cost of 30 

experimental dollars will occur for the round. 

You will be allowed to continue only if you pass the following quizzes.  

Quiz Question 1 

Pretending the following scenario happened for a particular round in the experiment: 

Defender 1 decided not to make the protection investment. 

Defender 2 decided to make the protection investment. 

Attacker decided not to attack. 

What is the experiment dollar payoff for the Defender 1? Answer: 100 

What is the experiment dollar payoff for the Attacker? Answer: 40 

 

Quiz Question 2 

Pretending the following scenario happened for a particular round in the experiment: 

Defender 1 decided not to make the protection investment. 

Defender 2 decided to make the protection investment. 

Attacker decided to attack Defender 1 and asked 55 as ransom. 

It was a successful attack, and Defender 1 decided to pay the ransom. 

What is the experiment dollar payoff for the Defender 1? Answer: 45 

What is the experiment dollar payoff for the Attacker? Answer: 55 

 

Quiz Question 3 

Pretending the following scenario happened for a particular round in the experiment: 

Defender 1 decided not to make the protection investment. 

Defender 2 decided not to make the protection investment. 

Attacker decided to attack Defender 2 and asked 60 as ransom. 

It was an unsuccessful attack. 

What is the experiment dollar payoff for the Defender 2? Answer: 100 

What is the experiment dollar payoff for the Attacker? Answer: 0 
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Appendix D. SoPHIE Screenshot (Baseline Treatment) 

Defenders make investment decisions 

 

  
Attacker waits for defenders
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Attacker makes attack and ransom decisions 

   
Affected defender makes payment decision 

  
End of a round: show profit 
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Injunctive Norm: Should Invest Descriptive Norm: 73% Invest 

Defenders make investment decisions 

  
  

Injunctive Norm: Should Not Pay Descriptive Norm: 62% Not Pay 

Affected defender makes payment decision 
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Appendix E. Model Estimation with Injunctive and Descriptive Appeals 

 

Injunctive Norms Should Invest Should Not Pay 

Parameter Estimate p-value Estimate p-value 

𝛾𝑝: payment bounded rationality 0.0313 0.000 0.0023 0.000 

𝛾𝑟: ransom bounded rationality 0.1404 0.000 0.1270 0.000 

𝛾𝑎: attack bounded rationality 0.0685 0.000 0.0453 0.000 

𝛾𝑖: investment bounded rationality 0.0914 0.000 0.1153 0.000 

𝛼𝑚: anchoring past (self) 31.5578 0.000 25.0615 0.000 

𝛼𝑦: anchoring past (other) 6.9687 0.000 11.0368 0.000 

𝛼𝑓: pay fairness 0.3536 0.000 9.0885 0.000 

 

Descriptive Norms 73% Invest 62% Not Pay 

Parameter Estimate p-value Estimate p-value 

𝛾𝑝: payment bounded rationality 0.0353 0.000 0.0186 0.000 

𝛾𝑟: ransom bounded rationality 0.0833 0.000 0.1680 0.000 

𝛾𝑎: attack bounded rationality 0.0883 0.000 0.0541 0.000 

𝛾𝑖: investment bounded rationality 0.1299 0.000 0.1260 0.000 

𝛼𝑚: anchoring past (self) 19.2649 0.000 28.2915 0.000 

𝛼𝑦: anchoring past (other) 4.9174 0.000 5.4026 0.000 

𝛼𝑓: pay fairness 0.1011 0.014 0.7430 0.000 
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Appendix F. Defenders’ chat messages examples from Chat Treatment 

837;"";"1532571875895";"Pa.46";"I WOULD INVEST IF I WERE YOU" 

839;"";"1532571928634";"Pa.46";"MAYBE THEY ONLY ATTACK IF WE DONT INVEST" 

913;"";"1532572471523";"Pa.4";"They never attack if we both invest" 

1003;"";"1532573056300";"Pa.4";"...maybe you should invest this time" 

890;"";"1532572349488";"Pa.4";"I'll invest" 

 

184;"";"1532122735864";"Pa.59";"they might attack if we choose not to defend though" 

165;"";"1532122494616";"Pa.18";"I'm going to just keep investing" 

187;"";"1532122798962";"Pa.59";"haha yeah i say we stick with investing" 

 

We omitted sentences containing only one or two words, such as “Hi”, “that’s good”, or any 

stopping words. We have a total of 622 lines of chat messages.  

If a defender mentioned “inv”, “invest”, “investment”, or “30, 70” we count it as an 

investment message. We have 134 lines of investment messages, which represent 21.54% of total 

messages, many of defenders were talking about “I will or will not to invest”, and suggesting 

what the other defender should do, such as “you should invest”.  

If a defender mentioned “pay”, “payment”, “ransom”, or “money”, we count it as a ransom 

payment message. We have 27 lines ransom payment messages, which represent 4.34% of total 

messages.  

If a defender did not mention any keyword listed above, such as “investment” or “ransom”, 

we categorize it as a no key word message. We have 461 no key word messages, which represent 

74.12% of total messages.  
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Appendix G.   Alternative Interventions: Penalty and Chat 

 

Decision Compare with Baseline 

 Investment Attack Ransom Payment 

Baseline 50.17% 50.17% 66.14 50.39% 

Penalty 
60.08% 

(0.250) 

38.00% 

(0.064) 

54.30 

(0.004) 

63.32% 

(0.090) 

Chat 
57.38% 

(0.489) 

40.48% 

(0.136) 

65.81 

(0.607) 

54.76% 

(0.978) 

Note: Mann-Whitney test, p -values are reported in parentheses 

 

Model Estimation with Penalty and Chat 

 Penalty Chat 

Parameter Estimate p-value Estimate p-value 

𝛾𝑝: payment bounded rationality 0.0316 0.000 0.0197 0.000 

𝛾𝑟: ransom bounded rationality 0.1381 0.000 0.1622 0.000 

𝛾𝑎: attack bounded rationality 0.0565 0.000 0.0640 0.000 

𝛾𝑖: investment bounded rationality 0.0877 0.000 0.1315 0.000 

𝛼𝑚: anchoring past (self) 23.5013 0.000 22.2947 0.000 

𝛼𝑦: anchoring past (other) 15.6999 0.000 8.6884 0.000 

𝛼𝑓: pay fairness 0.4297 0.001 0.5359 0.000 

∆𝑓: penalty 7.6221 0.349   

∆𝑖: chat invest   9.6521 0.000 

∆𝑝: chat pay   15.6932 0.280 

 

Summary Statistics – Penalty and Chat  

Decision Game Theory Baseline Penalty Chat 

Number of Groups N/A 20 20 21 

Investment Rate 100% 
50.17% 

(28.87%) 

60.08% 

(28.27) 

57.38% 

(29.26%) 

Attack Rate 0% 
50.17% 

(40.82%) 

38.00% 

(39.63%) 

40.48% 

(41.07%) 

Ransoms 
100 

85 for penalty 

66.14 

(12.48) 

54.30 

(10.80) 

65.81 

(14.14) 

Payment Rate 100% 
49.61% 

(25.19%) 

63.32% 

(26.01%) 

54.76% 

(34.29%) 

Notes:  

1. Standard deviations are reported in parentheses. 

2. All results are significantly (p-value < 0.01) different from the game theory predictions. 

3. Investment rate and attack rate are reported in group average across all periods. 

4. Ransoms are reported in group average across all periods conditioned on attack decision. 

5. Payment rate is reported in group average across all periods conditioned on successful 

attacks. 
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Appendix H. 

Baseline Model with Risk Aversion Estimation Result 

Parameter Estimate p-value 

𝛾𝑝: payment bounded rationality 0.0156 0.000 

𝛾𝑟: ransom bounded rationality 0.1384 0.000 

𝛾𝑎: attack bounded rationality 0.0459 0.000 

𝛾𝑖: investment bounded rationality 0.3545 0.000 

𝛼𝑚: anchoring past (self) 21.4969 0.000 

𝛼𝑦: anchoring past (other) 6.5884 0.003 

𝛼𝑓: pay fairness 0.4435 0.000 

𝜃𝑟: risk aversion 0.0157 0.049 

 


