EE Ph.D. Diagnostic Exam Text and Topic Reference Guide
(Last updated in Spring 2015 but remains accurate unless otherwise updated)

Thrust Area: Nanotechnology and MEMS – Materials and Devices

Nanoelectronics Theory
Chapter 1. Basic Semiconductor Properties
Chapter 3. Energy Band Theory
Chapter 4. Equilibrium Carrier Statistics

These topics can be learned by taking EE5381 and/or reading these chapters. The first part of this course covers the above material.

Nanoelectronics / MEMS Fabrication
Chapter 1. An Introduction to Microelectronic Fabrication
Chapter 4. Thermal Oxidation
Chapter 7. Optical Lithography
Chapter 8. Photoresists

Chapter 5 Silicon Micromachining: Bulk
Chapter 6 Silicon Micromachining: Surface

These topics can be learned by taking EE 5343 and EE5344 and/or learning these chapters. The first part of each course covers the above material.

Copies of these books are available in the Science and Engineering Library.
For questions regarding this thrust area, please contact Prof. Zeynep Çelik-Butler at zbutler@uta.edu.

Thrust Area: Fundamental Courses

Topic: Advanced Electronics

Text(s):

Focus: All of the topics below are from Text 1
Fabrication - 2.1, 2.2, 2.5, 2.6, 2.9, 2.10, Appendix A.2.1
BJT, JFET, MOS Models - 1.1 - 1.9, Appendix A.1.1
Single and Diff Amps - Chapter 3
Current Sources & Active Loads - Chapter 4, Appendix A.4.1, A.4.2
Output Stages - Chapter 5
Operational Amplifier - 6.1, 6.2, 6.8
Frequency Response - Chapter 7
Feedback - 8.1 - 8.5
Formulas for variety of connections for BJT and MOS devices will be supplied with the exam if needed. A copy of this is shown below.

Topic: Random Signals and Noise
Focus: Basics concepts of Probability Theory - Conditional Probability, Baye's Theorem
Random Variables - Discrete and Continuous Random Variables
Cumulative distribution function and Probability distribution function
Functions of Random Variables
Pairs of Random Variables
Joint pdf, Joint cdf, conditional pdf and cdf
Functions of a pair of Random variables
Vector Random Variables
Central Limit Theorem
Random Processes
Ergodicity and Stationarity of a Random Process
Power spectral density, auto-correlation and cross-correlation
Response of linear systems to random signals

Thrust Area: Electromagnetic Fields and Applications
Topic: Electromagnetic Theory
Focus: Chapters 1 - 8 of the text

Thrust Area: Power System Modeling and Analysis
Topic: Power System Modeling and Analysis
Text(s): 1. Power Systems Analysis by Arhur R. Bergen and Vijat Vittal.
Focus: Chapters 1 - 6, 8-10, and 12 - 14 of the text.

Thrust Area: Solid-State Devices, Circuits and Systems
Topic: Semiconductor Device Theory
Focus: Ch. 1 - Semiconductor Electronics, P1:1,3,4,6,8,18
 Appendix 1A - Electric Fields ...
 Ch. 2 - Silicon Technology, P2:15,18,19,20
 Ch. 3 - Metal-Semiconductor Contacts, P3:2,3,4,5,7,16
 Ch. 4 - pnJunctions, P4:1,2,5,6,9,14
 Ch. 5 Currents in pn Junctions - P5:1,2,3,6,9,11,19,21
 Ch. 6 - Bipolar Transistors I, P6:1,5,8,9,12,13,16,17
 Ch. 7 - Bipolar Transistors II, P7:1,2,7,9,11,23,29
 Ch. 8 - Properties of the MOS System, P8:1,2,4,7,12,15
 Ch. 9 - MOSFETs I, P9:1,3,5,7,14,21,
 Ch. 10 - MOSFETs II, P10:1,2,4,8

Thrust Area: Digital Signal and Image Processing
Topic: Digital Signal Processing

Text(s):

Thrust Area: Communications and Information Systems

Topic: Digital Communications

Text(s):

Thrust Area: Optical Devices and Systems

Topic: Principles of Photonics

Text(s):

Focus:
- Chapter 2 “Wave Motion,”
- Chapter 3 “EM Theory, Photons, and Light,”
- Chapter 4 “The Propagation of Light,”
- Chapter 5 “Geometrical Optics,”
- Chapter 8 “Polarization,”
- Chapter 9 “Interference.”

Thrust Area: Power Electronics

Topic: Power Electronics Engineering

Text(s):
2. Power Electronics: Converters, Applications, and Design by Mohan

Focus: Coverage of the exam is Chapters 1 to 9 of reference 1 and Chapter 5 of reference 2.

Thrust Area: Systems, Controls and Automated Manufacturing

Topic: Linear Systems Engineering

Text(s):

Focus:
- Chapters 1-7 in Text 1 and Chapters 1,2,3,6 and 11 in Text 2.
- State variable description (SVD) of dynamic systems - canonical forms
- State transformations, eigenvalues and eigenvectors
- Transfer functions
- Markov parameters
- Solution of state differential equations
- Controllability and observability - Cayley-Hamilton theorem, decomposition into controllable/uncontrollable and observable/unobservable parts
- State feedback design via pole placement
- Asymptotic observer design
- Combined state feedback with observer, principle of separation, transfer function design approach
- Multivariable systems----minimal realization, Popov-Belevitch-Hautus theorem, eigenvector test