

UNIVERSITY OF TEXAS ARLINGTON

ABSTRACT

The Project emphasis is to implement One-Piece Flow Line for Power-End Assembly by conducting Time-Studies, Line Balancing, Takt Time analysis, and Eliminating Non-value-added activities.

INTRODUCTION

Weir Oil & Gas is one of the three operating divisions at The Weir Group PLC, located in Fort Worth, TX. The company provides highly engineered and mission-critical solutions to upstream markets. Products include pressure pumping, pressure control equipment and aftermarket spares and services.

In this project, DMAIC methodology is used to approach Weir Oil & Gas to study the company situation and propose an implementational plan for one-piece flow power-end assembly line. The production process of Power-End of the pumps currently faces issues such as Excess Material Handling, Labor inefficiency, Unorganized work area, assembly process variation and Non-standard WIP control.

Measure: The team measured the current process by developing a process map of Power-End assembly process along with creating a cause and effect diagram which highlighted major issues which needed to be resolved to implement one-piece flow line.

REFERENCES

Sunny Chaleunsakd, Manny Flores, Mark Biery, Vannery Gonzalez. IE 3314, IE 4322, IE 4343, IE 4350

One Piece Flow Line for Power End Assembly Virgilio Carneiro, Hang Franciamone, Lalit Gupta **IE 4350 Capstone Design Fall 2018**

METHODOLOGY

Define-Problem Statement:

Current state shows excessive waste:

- Over production
- Excess material handling
- Excess motion
- Assembly process variation
- Unorganized work area
- No standard WIP control

Analyze: The team conducted time studies, developed spaghetti diagrams, developed a simulation, analyzed assembly waste and created a pareto chart to visualize the waste. Pareto chart explaining assembly-waste generation in Power End

CONCLUSION

FUTURE WORK

The Team has successfully proposed the layout for one-piece flow Power-end assembly line. Throughout different analysis methods including Takt time, time study, spaghetti diagram, and simulation, the team was able to determine that the one-piece flow assembly line supports company's future production demand and eliminating operating wastes as follows:

Metrics	Current	Future	Total Change
Space (sq ft)	3,016	4,222	-40%
Inventory (BLK)	7	4	43%
Walking Distance (FT)	309	68	78 %
Parts Movement Distance (FT)	308	138	55%
Crew Size (Number of operators)	14	11	21%
Productivity (PPLH)	82 %	93%	-13%

Implementation of Phase 5:

• Generate a Metric Control:

- Safety: Total of Incident Rate
- Quality: Monitory the number of defects
- On time Delivery: Measure OTD
- Cost: Measure the cost of over time and over production
- Audit the Metric controls:
 - Fail the Audit, generate Root Cause Analysis.