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ABSTRACT

EQUIVALENCE OF THE EXT-ALGEBRA

STRUCTURES OF AN R-MODULE

Publication No.

Chris Aholt, MATH

The University of Texas at Arlington, 2008

Faculty Mentor: Dr. David Jorgensen

The Ext functor is an important area of study in homological algebra,

and an algebra structure can be formed from it when dealing with modules

over a ring. This Ext-Algebra can be defined in two distinct ways, and it is

common mathematical folklore that the two are equivalent representations.

This work represents a single, self-contained development of the Ext-Algebra

through both constructions, filling the void in modern mathematical litera-

ture by carefully proving this equivalence of both the product and additive

structures. We begin with introductory definitions and theorems about chain

complexes and chain maps, homology and exactness, projective modules and
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resolutions, the pushout and pullback as modules over a ring, and func-

tors. The Ext groups are both constructed from projective resolutions and

given the Yoneda description as equivalence classes of exact sequences with

the Baer Sum as addition, and it is shown that these two representations are

equivalent element-wise, and over their respective sums. The product in each

of the two cases is then defined, and the two notions are once again shown to

be equivalent. Examples are given at the end of the work, to further cement

the ideas in the readers mind.
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1 INTRODUCTION

Throughout the thesis, assume R is a ring, and all R-modules are assumed

to be left R-modules unless otherwise stated. Also, the word map will refer

to an appropriate homomorphism unless otherwise stated.

The Ext functors and the Ext-Algebra of an R-module are important

areas of study; one need only skim Weibel [3] to find a multitude of properties

of an R-module which can be related to its Ext groups. In this thesis, we

work towards two distinct definitions of the Ext-Algebra structure, both

yielding equivalent descriptions. One description is through the cohomology

of a projective resolution, and one is through equivalence classes of exact

sequences of finite length (extensions). We carefully develop any necessary

terminology and results needed for the definitions, and then we rigorously

prove their equivalence. Of course, this has been done before in works such

as Mac Lane [2]; however, his approach is outdated and extremely difficult

to follow. We provide an approach using current definitions and notations,

translating the older works into the modern parlance.

2 PRELIMINARIES

As with any paper, we would like this development to be as self-contained as

possible. To this end, this section contains any preliminary concepts which

will be needed in the later sections. The experienced reader may quickly

skim over sections to which he or she is already familiar. However, these
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preliminary sections will also serve an an introduction for the notations used

throughout, so skipping them entirely is not recommended.

2.1 Chain Complexes

A chain complex of R-modules (Mi, di)i∈Z = M is a collection of R-

modules {Mi} and R-module homomorphisms {di : Mi → Mi−1} (called

boundary operators), each indexed by the integers, such that didi+1 = 0.

That is, Im di+1 ⊆ ker di for all i ∈ Z. A chain complex is usually written

· · · di+2−−→Mi+1
di+1−−→Mi

di−→Mi−1
di−1−−→ · · · ,

or more succinctly, where the boundary operators are understood,

· · · →Mi+1 →Mi →Mi−1 → · · · .

Such a chain complex M is often referred to as a sequence of homomorphisms.

All the chain complexes in which we will be interested in this thesis will have

Mi = 0 for all i < 0 and will be denoted simply

· · · →Mi → · · · →M1 →M0 → 0.

We define the nth homology group of this chain complex M to be

Hn(M) = ker dn/Im dn+1.
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This is sometimes referred to as the homology at the nth position. Elements

of ker dn are called called cycles, and elements of Im dn+1 are called bound-

aries.

If Hn(M) = 0 (equivalent to ker dn = Im dn+1) for a specific n, then

we say that the complex is exact at the nth position. Following suit, if

Hn(M) = 0 for all n, we simply say that the complex is exact, or that the

complex has no homology. A complex with no homology is often called an

exact sequence.

Analagously, we define a cochain complex of R-modules (M i, di)i∈Z =

M as a collection of R-modules {M i} and R-module homomorphisms {di :

M i → M i+1} (once again called boundary operators), each indexed by the

integers, such that di+1di = 0. That is, Im di ⊆ ker di+1 for all i ∈ Z. A

cochain complex is usually written

· · · d
i−2

−−→M i−1 di−1

−−→M i di−→M i+1 di+1

−−→ · · · ,

or more succinctly, where the boundary operators are understood,

· · · →M i−1 →M i →M i+1 → · · · .

As with a chain complex, such a cochain complex M is often referred to

as a sequence of homomorphisms. Also like chain complexes, the cochain

complexes in which we will be interested will have M i = 0 for all i < 0 and
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will be denoted

0→M0 →M1 → · · · →M i → · · · .

Of course, we have analagous definitions for cohomology at the nth position,

Hn(M) = ker dn/Im dn−1, and exactness.

It is clear that any cochain complex is equivalent to a chain complex and

vice versa with the identifications M i = M−i and di = d−i.

Let M = (Mi, d
M
i ) and N = (Ni, d

N
i ) be chain complexes of R-modules.

Then a chain map (of degree −n) f : M → N is a sequence of maps

{fi : Mi+n → Ni, i = 0, 1, 2, . . .} such that the maps commute with the

boundary operators; more formally, fi−1d
M
i+n = dNi fi for all i > 0. This, as

with many other definitions and theorems we shall meet, is best understood

with a commutative diagram:

· · ·
dMi+1+n//Mi+n

dMi+n //

fi

��

· · ·
dM3+n//M2+n

f2

��

dM2+n //M1+n

f1

��

dM1+n //Mn

f0

��

dMn // · · ·

· · · · · ·

· · ·
dNi+1 // Ni

dNi // · · · dN3 // N2

dN2 // N1

dN1 // N0
// 0.

The diagram is said to commute because following any two paths of maps

from the same module, ending at the same module, gives the same final map.

A diagram like this can easily become cluttered, so from here on out, we will

not be writing the boundary operators unless it is unclear from the context.

Suppose now that we have two chain maps of degree −n just as defined
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above, f = {fi : Mi+n → Ni} and g = {gi : Mi+n → Ni}. We say f and g

are chain homotopic and write f ∼ g if there exists a sequence of maps

h = {hi : Mi+n−1 → Ni} such that fi − gi = dNi+1hi+1 + hid
M
i+n for all i ≥ 0.

One can check that being chain homotopic is an equivalence relation on the

set of chain maps of degree −n.

2.2 Free and Projective Modules

Now we will begin talking about some special types of R-modules. Many of

the definitions and the ideas for the proofs of the simpler theorems in this

section can be found in an appendix of Eisenbud [1] or in Weibel [3].

The first, and probably most simple to understand R-module, is a free

module. The free R-module F (X) over a set X is formed by taking the

elements of X as linearly independent elements, and then taking formal finite

linear combinations of those elements with coefficients in R. The set X is

called a basis for F (X). Free modules will play an important role shortly,

but we must first develop some new terminology.

Let P be an R-module. P is called projective if the following condition

is satisfied: for any two R-modules M and N , if f : P → N and g : M � N

are R-module homomorphisms with g surjective, then there exists a map

(not necessarily unique) h : P → M such that gh = f . This is more neatly

defined by saying that h makes the following diagram commute, where the

5



bottom row is exact:

P

∃h
���
�
�

f

  BBBBBBBB

M
g // N // 0

Now let M be an arbitrary R-module. A projective resolution of M

is an exact chain complex as below, with Mi projective for each i.

· · ·
dMi+1−−→Mi

dMi−−→ · · ·
dM2−−→M1

dM1−−→M0

dM0−−→M → 0.

Note that the exactness of this sequence requires that dM0 is surjective. To

simplify notation, we will often not write the superscript M on the dMi when

no confusion will result.

Let us now develop some simple results about projective modules.

Theorem 2.1. A free R-module is also projective.

Proof. Let M,N, and F be R-modules with F free over the set X; and let

f : F → N , g : M � N be homomorphisms such that g is surjective. We

will find a function h : F →M such that gh = f .

Consider X as the basis for F , so X ⊆ F . Since g is surjective, then for

each x ∈ X, we can find some mx ∈M such that g(mx) = f(x). Define h by

setting h(x) = mx (choose one mx for each x), and extend h by linearity over

F . That is, for each y ∈ F , y =
∑k

i=1 rixi uniquely for ri ∈ R and distinct

xi ∈ X. So define h(y) =
∑k

i=1 rih(xi). The uniqueness of this representation

allows that the function h is well-defined, because h(y) can only be defined
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in this one way. It is simple to check that gh = f by the construction, and

that h is indeed an R-module homomorphism.

Theorem 2.2. Every R-module has a projective resolution.

Proof. Let M be an R-module with set of generators µ. Then let M0 be

the free module over µ, so M0 = F (µ). Let d0 : M0 → M be the obvious

map. That is, for x ∈ M0, x =
∑j

i=1 rimi uniquely for distinct mi ∈ µ. So

let d0(x) =
∑j

i=1 rimi, where this sum of products is taken to be over M .

Clearly Im d0 = M .

We will now define di and Mi inductively for i > 0. For some k ≥ 0,

assume we have the following sequence defined so that is is exact except at

Mk:

Mk
dk−→Mk−1

dk−1−−→ · · · d1−→M0
d0−→M → 0.

Let µk be the set of generators for ker dk ⊆ Mk, and define Mk+1 = F (µk),

the free module over µk. As above, for any element x ∈Mk+1, x =
∑j

i=1 rimi

uniquely for distinct mi ∈ µk. So we define dk+1 : Mk+1 →Mk by dk+1(x) =∑j
i=1 rimi, where (as above) this sum of products is taken to be over Mk.

Clearly, Im dk+1 = ker dk.

Continuing in this manner – since each of the Mi is free and therefore

projective by Theorem 2.1 – we get the wanted projective resolution

· · · di+1−−→Mi
di−→ · · · d2−→M1

d1−→M0
d0−→M → 0.
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Theorem 2.3. If M and N are R-modules with respective projective reso-

lutions M = (Mi, d
M
i ) and N = (Ni, d

N
i ), and for some n, f : Mn → N is

an R-module homomorphism such that fdMn+1 = 0, then there is an induced

chain map of degree −n, f̄ : M→ N.

Proof. We recognize the following diagram immediately, remembering that

dN0 is necessarily surjective:

Mn

���
�
�

f

  BBBBBBBB

N0
dN0

// N // 0.

Since Mn is projective, then there must exist a map f0 : Mn → N0 such

that dN0 f0 = f . This f0 will be the start of our chain map f̄ . Note that

dN0 (f0d
M
n+1) = (dN0 f0)dMn+1 = fdMn+1 = 0 (by hypothesis), so Im (f0d

M
n+1) ⊆

ker dN0 = Im dN1 (by exactness). Because of this, we can create another

diagram:

Mn+1

���
�
�

f0dMn+1

$$IIIIIIIII

N1
dN1

// Im dN1
// 0.

Because Mn+1 is projective, there exists a map f1 : Mn+1 → N1 such that

dN1 f1 = f0d
M
n+1.

Now we will proceed inductively. Suppose that k ∈ Z+ such that for all
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i ≤ k, there exists fi : Mi+n → Ni such that fi−1d
M
i+n = dNi fi for all i > 0.

We can say that we have the chain map partially defined by the diagram:

· · · //Mn+k+1
//Mn+k

fk

��

// · · · //Mn+1

f1

��

//Mn

f0

��

// · · ·

· · ·

· · · // Nk+1
// Nk

// · · · // N1
// N0

// N // 0.

As in the base case above, we have dNk (fkd
M
k+n+1) = (dNk fk)d

M
k+n+1 = (fk−1d

M
k+n)dMk+n+1 =

fk−1(dMk+nd
M
k+n+1) = fk−1(0) = 0. Thus, Im (fkd

M
k+n+1) ⊆ ker dNk = Im dNk+1

(by exactness). So we can make yet another diagram:

Mn+k+1

���
�
�

fkd
M
n+k+1

%%LLLLLLLLLL

Nk+1
dNk+1

// Im dNk+1
// 0.

Once again, since Mk+n+1 is projective, there exists a map fk+1 : Mk+n+1 →

Nk+1 such that dNk+1fk+1 = fkd
M
k+n+1. We have now finished inductively

defining the chain map f̄ = {fi}∞i=0.

Theorem 2.4 (Comparison Theorem). If M and N are as in the hypothesis

of Theorem 2.3 and h : Mn → N and g : Mn → N are also as f in the

hypothesis of Theorem 2.3, with the added restriction that h − g = bdMn for

some b : Mn−1 → N , then any two induced chain maps h̄ = {hi : Mi+n → Ni}

and ḡ = {gi : Mi+n → Ni}, respectively, are chain homotopic. In particular,
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for any f as in the hypothesis of Theorem 2.3, any two chain maps induced

by f are chain homotopic.

Proof. To prove this, we need to define a sequence of maps {fi : Mi+n−1 →

Ni} such that hi − gi = dNi+1fi+1 + fid
M
i+n for all i ≥ 0. First, note that

because dN0 is surjective, then for every x ∈Mn−1, there exists some yx ∈ N0

such that dN0 (yx) = b(x). So define f0 : Mn−1 → N0 by f0(x) = yx (so

dN0 (f0(x)) = dN0 (yx) = b(x), or dN0 f0 = b). Since h̄ and ḡ are induced from

h and g, respectively, as in f in the proof above, dN0 h0 = h, and dN0 g0 = g,

which implies that dN0 (h0 − g0 − f0d
M
n ) = dN0 h0 − dN0 g0 − dN0 (f0d

M
n ) = h −

g − (dN0 f0)dMn = h − g − bdMn = h − g − (h − g) = 0. From this we get

Im (h0 − g0 − f0d
M
n ) ⊆ ker dN0 = Im dN1 (by exactness). So we have the

following familiar-looking diagram, with bottom row exact:

Mn

���
�
�

h0−g0−f0dMn

##GGGGGGGG

N1
dN1

// Im dN1
// 0.

Because Mn is projective, there exists a function f1 : Mn → N1 such that

h0 − g0 − f0d
M
n = dN1 f1, or h0 − g0 = dN1 f1 + f0d

M
n . From this point, we

proceed inductively.

Suppose that for all i = 0, 1, . . . , k, there exists fi : Mi+n−1 → Ni

such that hi − gi = dNi+1fi+1 + fid
M
i+n. Note that this implies that dNk (hk −

gk) = (hk−1 − gk−1)dMk+n (by diagram commutativitiy of the chain maps) =

10



(dNk fk+fk−1d
M
k+n−1)dMk+n = dNk fkd

M
k+n+fk−1d

M
k+n−1d

M
k+n = dNk fkd

M
k+n+fk−10 =

dNk fkd
M
k+n. All this implies dNk (hk−gk−fkdMk+n) = 0, or Im (hk−gk−fkdMk+n) ⊆

ker dNk = Im dNk+1 (by exactness). With this we can draw another diagram:

Mk+n

���
�
�

hk−gk−fkdMk+n

$$JJJJJJJJJ

Nk+1
dNk+1

// Im dNk+1
// 0.

Since Mk+n is projective, there exists a map fk+1 : Mk+n → Nk+1 such

that hk − gk − fkdMk+n = dNk+1fk+1, which is equivalent to saying hk − gk =

dNk+1fk+1 + fkd
M
k+n. This finishes our induction and the proof.

To prove the last statement of the theorem, just note that f − f = 0, so

we can take b = 0.

Theorems 2.3 and 2.4 will be very important in one development of the

Ext functor, where functions f which satisfy the hypothesis of Theorem 2.3

will be the representative elements of the Ext groups.

The notion of a projective R-module has a dual notion, that of an in-

jective R-module. Many similar theorems hold for injective modules and

resolutions, and in fact much of the theory of this thesis can also be done

with these injective modules. The curious reader can see Eisenbud [1] for

such development; however, we will not concern ourselves with this notion

for this thesis.
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2.3 Pushout and Pullback

In this section we will develop two more special types of R-modules, each

constructed via homomorphisms.

Suppose M , N , and X are R-modules, and f : M → X, g : N → X

are R-module homomorphisms. Then the pullback (K, i, j) of f and g is an

R-module K and two homomorphisms i : K →M and j : K → N such that

fi = gj, and if K ′ is another R-module and i′ : K ′ →M and j′ : K ′ → N are

homomorphisms such that fi′ = gj′, then there is a unique map h : K ′ → K

such that the following diagram commutes:

K ′

i′

**TTTTTTTTTTTTTTTTTTTTT

j′

��,
,,,,,,,,,,,,,,,,,,,

∃!h

  B
B

B
B

K
i

//

j

��

M

f

��
N

g // X

We will now show that this pullback exists and give its explicit form.

Suppose X, M , N , f , and g are as defined above.

Proposition 2.5. Let K ⊆ M × N be defined as K = {(m,n) : f(m) =

g(n)}. Let i : K → M and j : K → N be the restrictions of the natural

projections; that is, i((m,n)) = m and j((m,n)) = n for all (m,n) ∈ K.

Then (K, i, j) is the pullback of f and g.

Proof. It is clear that fi = gj. For suppose (m,n) ∈ K, so f(m) = g(n).
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Then f(i((m,n))) = f(m) = g(n) = g(j((m,n))).

Now suppose (K ′, i′, j′) is as in the definition of the pullback, so fi′ = gj′.

Define h : K ′ → K by h(k) = (i′(k), j′(k)) for k ∈ K ′. This is well-defined

because f(i′(k)) = g(j′(k)) for all k ∈ K ′, so Im h ⊆ K. We must also

show that ih = i′ and jh = j′, so the diagram in the definition of the

pullback commutes. Let k ∈ K ′. Then i(h(k)) = i((i′(k), j′(k))) = i′(k), and

j(h(k)) = j((i′(k), j′(k))) = j′(k). Thus, the diagram commutes.

All that remains to show is that this h is the unique map which can satisfy

the requirements of the pullback. So suppose h′ : K ′ → K is another map

for which the diagram commutes, so ih′ = i′ and jh′ = j′. For any k ∈ K ′,

suppose h′(k) = (m,n). Then h(k) = (i′(k), j′(k)) = (i(h′(k)), j(h′(k))) =

(i((m,n)), j((m,n))) = (m,n) = h′(k). Thus, h = h′, so h is unique.

We now define the module which is dual to the pullback. Let M , N , and

X be R-modules, and let f : X → M and g : X → N be homomorphisms.

Then the pushout (T, i, j) of f and g is an R-module T and two R-module

homomorphisms i : M → T and j : N → T such that if = jg, and if T ′

is another R-module and i′ : M → T ′ and j′ : N → T ′ are homomorphisms

such that i′f = j′g, then there is a unique map h : T → T ′ such that the

13



following diagram commutes:

X
f //

g

��

M

i

��
i′

��,
,,,,,,,,,,,,,,,,,,,

N
j //

j′
**TTTTTTTTTTTTTTTTTTTTT T

∃!h

  B
B

B
B

T ′

Let us now give the explicit form for the pushout. Let X, M , N , f , and

g be defined as above. Let I ⊆M ×N be

I = {(m,n) : m = f(x) and n = −g(x) for some x ∈ X}.

I is clearly a submodule of M ×N .

Proposition 2.6. Let T = (M × N)/I, with I as defined above. Let i :

M → T and j : N → T be defined by i(m) = (m, 0) and j(n) = (0, n) for

all m ∈ M and n ∈ N , where (m,n) is the equivalence class of (m,n) in T .

Then (T, i, j) is the pushout of f and g.

Proof. First we must show that if = jg, so let x ∈ X. Then i(f(x)) −

j(g(x)) = (f(x), 0)− (0, g(x)) = (f(x),−g(x)) = (0, 0) because of the way I

is defined. Thus, i(f(x)) = j(g(x)) and if = jg.

Now, suppose (T ′, i′, j′) is as in the definition of the pushout, so i′f = j′g.

Define h : T → T ′ by h((m,n)) = i′(m) + j′(n) for (m,n) ∈ T . We will first

14



show that this h is well-defined. To this end, suppose (m,n), (µ, ν) ∈ T

such that (m,n) = (µ, ν) ⇐⇒ (m,n) − (µ, ν) ∈ I ⇐⇒ m − µ =

f(x) and n − ν = −g(x) for some x ∈ X. Then h((m,n)) − h((µ, ν)) =

i′(m) + j′(n)− i′(µ)− j′(ν) = i′(m− µ) + j′(n− ν) = i′(f(x))− j′(g(x)) = 0

because i′f = j′g. Thus, h((m,n)) = h((µ, ν)) and h is well-defined.

We must also show that hi = i′ and hj = j′, so that the diagram in

the definition of pushout commutes. Let m ∈ M , n ∈ N . Then h(i(m)) =

h((m, 0)) = i′(m) + j′(0) = i′(m) + 0 = i′(m), and h(j(n)) = h((0, n)) =

i′(0) + j′(n) = 0 + j′(n) = j′(n). Thus, the diagram commutes.

All that remains to show is that this h is the unique map which can

satisfy the requirements of the pushout. So suppose h′ : T → T ′ is another

map for which the diagram commutes, so h′i = i′ and h′j = j′. Then

for any (m,n) ∈ T , h((m,n)) = i′(m) + j′(n) = h′(i(m)) + h′(j(n)) =

h′((m, 0)) + h′((0, n)) = h′((m, 0) + (0, n)) = h′((m,n)). Thus, h = h′, so h

is unique.

Note that the main points of Propositions 2.5 and 2.6 are to show ex-

plicitly what the pullback and pushout are, as we will now give some basic

properties based on their specific forms.

Theorem 2.7. Suppose we have the following diagram

0 // X
f //

g

��

M
d2 //

i
��

Y1
d1 // Y0

N
j // T
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where (T, i, j) is the pushout of f and g. Then if the top row is exact, there

exists an exact sequence

0→ N
j−→ T

ε−→ Y1
d1−→ Y0.

That is, we can extend the bottom row to an exact sequence.

Proof. First we define ε : T → Y1 by ε((m,n)) = d2(m) for all m ∈ M ,

n ∈ N . We show this is well-defined by assuming m1,m2 ∈M and n1, n2 ∈ N

such that (m1, n1) = (m2, n2) in T . This means that (m1−m2, n1−n2) ∈ I;

or in other words, m1 −m2 = f(x) and n1 − n2 = −g(x) for some x ∈ X.

Then ε((m1, n1)) − ε((m2, n2)) = ε((m1 −m2, n1 − n2)) = d2(m1 − m2) =

d2(f(x)) = 0, since the top row in the original diagram is exact. Thus,

ε((m1, n1)) = ε((m2, n2)), so ε is well-defined.

Now, we need to show the exactness of the sequence

0→ N
j−→ T

ε−→ Y1
d1−→ Y0.

So we need to show (i) ker j = 0, (ii) ker ε = Im j, and (iii) ker d1 = Im ε.

(i) Suppose n ∈ ker j, so j(n) = 0 and (0, n) ∈ I. This is true only if

0 = f(x) and n = −g(x) for some x ∈ X. However, from the fact

that the top row in the original diagram is exact, we know that f is

injective. Thus, x = 0, so n = −g(0) = 0 and ker j = 0.

(ii ⊆) Suppose (m,n) ∈ ker ε. Then ε((m,n)) = 0 =⇒ d2(m) = 0, which
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means m ∈ ker d2 = Im f by exactness. So m = f(x) for some x ∈ X.

We note that j(n + g(x)) = (0, n+ g(x)) and that m = m− 0 = f(x)

and n − (n + g(x)) = −g(x), so (m,n) − (0, n + g(x)) ∈ I, which

implies that (m,n) = (0, n+ g(x)). Thus, j(n + g(x)) = (m,n), and

(m,n) ∈ Im j.

(ii ⊇) Suppose (m,n) ∈ Im j. This is true only if (m,n) = j(k) for some

k ∈ N . But j(k) = (0, k), so (m,n) = (0, k). Then ε((m,n)) =

ε((0, k)) = d2(0) = 0. Thus, (m,n) ∈ ker ε.

(iii ⊆) Suppose y ∈ ker d1 = Im d2 by exactness. Then y = d2(m) for some

m ∈M , and ε((m, 0)) = d2(m) = y, so y ∈ Im ε.

(iii ⊇) Suppose y ∈ Im ε, so y = ε((m,n)) for some (m,n) ∈ T . But

ε((m,n)) = d2(m), so y = d2(m), and y ∈ Im d2 = ker d1 by exactness.

In less formal terms, what Theorem 2.7 gives us is that if we have an

exact sequence of R-modules

0→ X →M → Z1
d1−→ Z2 → · · ·

and a map g : X → N , then we can construct a new exact sequence

0→ N → T → Z1
d1−→ Z2 → · · · ,
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where we note that the ends of the sequences are equal. We have a similar

result for the pullback.

Theorem 2.8. Suppose we have the following diagram

K
i //

j

��

M

f

��
Y0

d0 // Y1
d1 // N g

// X // 0

where (K, i, j) is the pullback of f and g. Then if the bottom row is exact,

there exists an exact sequence

0→ Y0
d0−→ Y1

ε−→ K
i−→M → 0.

Proof. Let ε : Y1 → K by ε(y) = (0, d1(y)). This is well-defined because

g(d1(y)) = 0. The proof is the exact dual of that of Theorem 2.7.

2.4 Functors

Let us give just a few definitions from category theory.

A category C is a class of objects ob(C) and a class of sets of mor-

phisms mor(A,B), one for each pair of objects A and B, with the following

properties (f ∈ mor(A,B) is denoted f : A→ B)

i) For each triple of objects (A,B,C), there is an associative function

called composition from mor(B,C) × mor(A,B) → mor(A,C). For
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f : A → B and g : B → C, its image under composition is denoted

gf : A→ C.

ii) For each object A, there exists a morphism 1A : A → A called the

identity on A such that for any f : A → B or g : B → A, 1Ag = g

and f1A = f .

To name a few examples, the class of all sets as objects with maps of sets

as the morphisms is a category. Also, more of interest to us, the class of

all R-modules for a given ring R as objects with R-module homomorphisms

as the morphisms is a category. We can discuss certain kinds of mappings

between categories.

Let C and D be categories. A covariant functor F from C to D (denoted,

of course, F : C → D) is really just two functions, the image of each denoted

by F, which assigns to each object A of C an object F(A) of D, and assigns

to each morphism in C, g : A → B, a morphism in D, F(g) : F(A) → F(B),

such that F(1A) = 1F(A) for each object A in C and F(gh) = F(g)F(h) for

each morphism g and h in C where gh is defined.

Likewise, a contravariant functor G from C to D (denoted G : C → D)

is two functions, the image of each denoted by G, which assigns to each object

A of C an object G(A) of D, and assigns to each morphism in C, f : A→ B,

a morphism in D, G(f) : G(B) → G(A), such that G(1A) = 1G(A) for each

object A in C and G(fh) = G(h)G(f) for each morphism f and h in C where

fh is defined.
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Colloquially, the difference between covariant and contravariant functors

is that covariant functors leave morphisms pointing the same way, whereas

contravariant functors flip the morphisms around.

Let us give an example of two functors. First, let C be the category of

R-modules for a given ring R, and let D be the category of sets. The forgetful

functor, F : C → D, is a covariant functor which assigns to each R-module

just its underlying set, and leaves each morphism unchanged, excepting that

there is loss of information as just a map of sets.

Of more interest, now let C be the category of R-modules, let B be a

fixed R-module, and let D be the category of abelian groups. Then the

contravariant hom functor, HomR(−, B) : C → D, is a contravariant functor

which assigns to each R-module A the set mor(A,B), and assigns to each

morphism f : A → C the morphism HomR(f,B) : mor(C,B) → mor(A,B)

defined by HomR(f,B)(g) = gf for each g ∈ mor(C,B). This functor will

be applied very much in the sequel.

3 DEVELOPMENT OF EXT

Let us now begin the main idea of this thesis, the development of the Ext

functors ExtiR(−, N) of arbitrary R-modules M and N . There are two com-

mon ways of describing elements of each Ext group ExtiR(M,N) (note the

abuse of notation), one involving projective resolutions, and one involving

equivalence classes of exact sequences.
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3.1 From Projective Resolutions

Throughout this subsection, we assume that M and N are R-modules with

respective projective resolutions

(M) · · ·
dMi+1−−→Mi

dMi−−→ · · ·
dM2−−→M1

dM1−−→M0

dM0−−→M −→ 0

and

(N) · · ·
dNi+1−−→ Ni

dNi−→ · · ·
dN2−→ N1

dN1−→ N0

dN0−→ N −→ 0.

Also, whenever we write brackets around something, it implies an underlying

equivalence class.

We apply the contravariant hom functor HomR(−, N) to the deleted res-

olution M̃ of M (M without M) to get another sequence (not necessarily

exact),

(HomR(M̃, N)) 0 −→ HomR(M0, N)
dM1
∗

−−→ HomR(M1, N)
dM2
∗

−−→ · · · ,

where dMi
∗

: HomR(Mi−1, N) → HomR(Mi, N) by sending f : Mi−1 → N to

fdMi : Mi → N . That is, for all x ∈Mi, (dMi
∗
(f))(x) = f(dMi (x)). The reader

can easily verify that dMi+1
∗
dMi
∗

= 0, so this is indeed a cochain complex. We

define the nth Ext group to be the cohomology of this new sequence:

ExtnR(M,N) = ker(dMn+1

∗
)/Im(dMn

∗
).
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The nth Ext functor of M with respect to N will be the functor

ExtnR(−, N) : R-Mod→ Ab,

where R-Mod is the category of R-modules, and Ab is the category of

Abelian groups. To quickly describe our notation, suppose α ∈ ExtnR(M,N),

so α = f + Im(dMn
∗
) for some f ∈ ker(dMn+1

∗
) ⊆ HomR(Mn, N). We will

denote α by [f ]. We will show that this definition of the Ext groups is

actually independent of the choice of projective resolution. But we must first

show the equivalence of this definition to a definition dealing with homotopy

classes of chain maps.

In this case, consider Fn(M,N) to be homotopy classes of chain maps

of degree −n from M to N. That is, [f ] ∈ Fn(M,N) if and only if f =

{fi : Mi+n → Ni}∞i=0 is a chain map. Two equivalence classes of chain maps

[f ], [g] ∈ Fn(M,N) are considered to be equal if and only if f ∼ g. This is

well-defined because of the fact that ∼ is an equivalence relation.

Theorem 3.1. For given projective resolutions of M and N , ExtnR(M,N) ∼=

Fn(M,N).

Proof. We assume that M and N have respective projective resolutions M

and N as above. Let us construct the needed isomorphism.

Suppose [f ] ∈ ExtnR(M,N), so f : Mn → N such that dMn+1
∗
(f) = fdMn+1 =

0. So by Theorem 2.3, there exists a chain map f ′ : M → N of degree −n
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induced by f . Let

ϕ : ExtnR(M,N)→ Fn(M,N)

be defined by ϕ([f ]) = [f ′]. This ϕ will be the isomorphism from ExtnR(M,N)

to Fn(M,N). We must show that ϕ is well-defined. If [g] ∈ ExtnR(M,N) such

that [f ] = [g], then this means that f − g ∈ Im(dMn
∗
), so f − g = (dMn

∗
)(b) =

bdMn for some b : Mn−1 → N . Applying Theorem 2.4, we have that f and g

induce chain homotopic maps, so ϕ([f ]) = ϕ([g]).

Now suppose [f ′] ∈ Fn(M,N) such that f ′ = {fi : Mi+n → Ni}∞i=0.

Then f = dN0 f0 : Mn → N is such that dMn+1
∗
(f) = fdMn+1 = (dN0 f0)dMn+1 =

dN0 (f0d
M
n+1) = dN0 (dN1 f1) = (dN0 d

N
1 )f1 = 0f1 = 0, so f ∈ ker(dMn+1

∗
). Define

ψ : Fn(M,N)→ ExtnR(M,N)

by ψ([f ′]) = [f ]. We will show that ψ is well-defined. If [g′] ∈ Fn(M,N)

such that [f ′] = [g′], then f ′ ∼ g′, so there exists a series of maps {hi :

Mi+n−1 → Ni} such that fi − gi = dNi+1hi+1 + hid
M
i+n for all i ≥ 0. In

particular, f0−g0 = dN1 h1+h0d
M
n . So dN0 f0−dN0 g0 = dN0 (f0−g0) = dN0 (dN1 h1+

h0d
M
n ) = dN0 (dN1 h1)+dN0 (h0d

M
n ) = (dN0 d

N
1 )h1+(dN0 h0)dMn = 0h1+(dN0 h0)dMn =

0 + (dN0 h0)dMn = (dN0 h0)dMn . This means that there exists b : Mn−1 → N

(b = dN0 h0) such that dN0 f0−dN0 g0 = bdMn , so [dN0 f0] = [dN0 g0] in ExtnR(M,N),

which means that ψ([f ′]) = ψ([g′]).

It is clear from the way that a map in ExtnR(M,N) induces a chain map

as in Theorem 2.3 that ψϕ = 1ExtnR(M,N). We will show that ϕψ = 1Fn(M,N),

23



so ψ = ϕ−1 and ϕ is thus bijective. We assume that we have some chain

map f = {fi : Mi+n → Ni}∞i=0. Then ψ(f) = dN0 f0, and ϕ(dN0 f0) = h = {hi :

Mi+n → Ni}∞i=0, where dN0 h0 = dN0 f0. We can once again apply Theorem 2.4

to say that dN0 h0 and dN0 f0 will induce homotopic chain maps. Thus, h ∼ f ,

and ϕψ = 1Fn(M,N).

Therefore, ϕ is a bijective map from ExtnR(M,N) to F n(M,N). We need

only to show that ϕ preserves sums to show that ϕ is an isomorphism. This,

however, follows clearly from the definitions.

We can now remove the dependence on a specific projective resolution.

Theorem 3.2. The definition of ExtnR(M,N) does not rely on a specific

projective resolution.

Proof. Suppose M has two projective resolutions, M as before and M′ as

(M′) · · ·
dMi+1

′

−−−→M ′
i

dMi
′

−−→ · · ·
dM2
′

−−→M ′
1

dM1
′

−−→M ′
0

dM0
′

−−→M −→ 0.

Since dM0 : M0 →M , this can induce a chain map of degree 0 f = {fi : Mi →

M ′
i}∞i=0 from M to M′. Similarly, since dM0

′
: M ′

0 → M , we have an induced

chain map of degree 0 f ′ = {f ′i : M ′
i → Mi}∞i=0 from M′ to M. Note that we

have dM0
′
f0 = dM0 and dM0 f

′
0 = dM0

′
, so by substitution dM0 (f ′0f0) = dM0 and

dM0
′
(f0f

′
0) = dM0

′
. By the comparison theorem, this means that a chain map

induced by dM0 (f ′0f0) will be chain homotopic to a chain map induced by dM0 .

Specifically, f ′f is therefore chain homotopic to 1 = {1Mi
}∞i=0, so there exists
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a sequence of maps {hi : Mi−1 →Mi} such that f ′ifi−1Mi
= dMi+1hi+1 +hid

M
i

for all i ≥ 0, where M−1 is defined to be M . Likewise a chain map induced

by dM0
′
(f0f

′
0) will be chain homotopic to a chain map induced by dM0

′
, and

thus ff ′ is chain homotopic to 1′ = {1M ′i}
∞
i=0.

Because of Theorem 3.1, we will focus only on Fn(M,N). So suppose

g = {gi : Mi+n → Ni} is a chain map of degree −n from M to N, and

h = {M ′
i+n → Ni} is a chain map of degree −n from M′ to N. We can

construct a chain map from M′ to N by taking g′ = gf ′. Likewise, we can

construct a chain map from M to N by taking h′ = hf . We will show that

these two processes are inverse to each other by showing that g′′ = g′f ∼ g

and h′′ = h′f ′ ∼ h.

Firstly, g′′ = g′f = (gf ′)f = g(f ′f). We would like to show that g(f ′f) ∼

g. To this end, since we know that f ′f ∼ 1 as above, gi(f
′
i+nfi+n) − gi =

gi(f
′
i+nfi+n − 1Mi+n

) = gi(d
M
i+n+1hi+n+1 + hi+nd

M
i+n) = (gid

M
i+n+1)hi+n+1 +

(gihi+n)dMi+n = (dNi+1gi+1)hi+n+1+(gihi+n)dMi+n = dNi+1(gi+1hi+n+1)+(gihi+n)dMi+n.

So defining {ki : Mi+n−1 → Ni} by ki = gihi+n, we get gi(f
′
i+nfi+n) − gi =

dNi+1ki+1 + kid
M
i+n, so g(f ′f) = g′′ ∼ g.

We can similarly show h′′ ∼ h. Thus, the processes of obtaining new

homotopy classes of chain maps are invertible, so the choice of specific pro-

jective resolution is irrelevant.
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3.2 The Yoneda Description

We now develop a very different description of the Ext groups, in an attempt

to modernize the same descriptions given in Mac Lane [2]. Throughout this

subsection, we assume that M and N are R-modules.

For n ∈ Z+, let Sn(M,N) be the set of all exact sequences of the form

0→ N → Xn → · · · → X1 →M → 0,

where Xi is an R-module for i = 1, . . . , n. We can define a relation ' on

Sn(M,N). Suppose α, β ∈ Sn(M,N) as

α : 0→ N → An → · · · → A1 →M → 0

β : 0→ N → Bn → · · · → B1 →M → 0.

We say that α ' β if there exists maps from Ai → Bi such that the following

diagram commutes

0 // N // An //

��

· · · // A2
//

��

A1
//

��

M // 0

0 // N // Bn
// · · · // B2

// B1
//M // 0.

We must note that ' is not an equivalence relation (unless n = 1), but we

can define Yoneda equivalence 'Y to be the equivalence relation generated

by '. That is, α and β will be considered to be Yoneda equivalent, and we
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write α 'Y β if there exist R-modules Xj
i and maps such that the following

diagram commutes

0 // N // An //
OO

��

· · · // Ai //
OO

��

· · · // A1
//

OO

��

M // 0

0 // N // X1
n

//
OO

��

· · · // X1
i

//
OO

��

· · · // X1
1

//
OO

��

M // 0

...
...

...OO

��

...
...OO

��

...
...OO

��

...
...

0 // N // Xk
nOO

��

// · · · // Xk
i

//
OO

��

· · · // Xk
1

//
OO

��

M // 0

0 // N // Bn
// · · · // Bi

// · · · // B1
//M // 0,

where the up-down arrows indicate that at any given level, the maps are

either all pointing upwards or downwards.

Now, we define

Tn(M,N) = Sn(M,N)/ 'Y .

We will show that Tn(M,N) ∼= ExtnR(M,N), but let us first define the sum

of two elements in Tn(M,N), as it is not so obvious.

Let [α], [β] ∈ Tn(M,N) with α and β denoted as above. The Baer sum

of Tn(M,N) is a specific binary operation

� : Tn(M,N)× Tn(M,N)→ Tn(M,N),
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where the image of ([α], [β]) under � is denoted [α] � [β]. In defining the

Baer sum of [α] and [β], let K be the pullback of the maps A1 → M and

B1 → M . Also, let T be the pushout of the maps N → An and N → Bn.

Note that by Theorem 2.7 we have exact sequences

0→ Bn → T → An−1 → · · · → A1 →M → 0, and

0→ An → T → Bn−1 → · · · → B1 →M → 0.

Similarly by Theorem 2.8 we have exact sequences

0→ N → An → · · · → A2 → K → B1 → 0, and

0→ N → Bn → · · · → B2 → K → A1 → 0.

The Baer sum [α] � [β] is defined to be the equivalence class (under 'Y )

of

0→ N → T → An−1 ⊕Bn−1 → · · · → A2 ⊕B2 → K →M → 0,

where the maps Ai ⊕ Bi → Ai−1 ⊕ Bi−1 are just the direct sum of the maps

Ai → Ai−1 and Bi → Bi−1. The map T → An−1 ⊕ Bn−1 is the direct sum

of the maps T → An−1 and T → Bn−1 as described in the above exact

sequences. Similarly, the map A2 ⊕ B2 → K is the coordinate-wise map

comprised of the maps A2 → K and B2 → K from the above sequences. The
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map N → T is the composition N → An → T (= N → Bn → T ). Finally,

the map K → M is the composition K → A1 → M (= K → B1 → M).

This description of the Baer sum is incorrectly stated in Weibel [3], so the

following notations and theorem will help clear up any doubts about the

correctness of this definition.

Clearly, there are some issues to consider with this definition (exactness

and well-definedness). Let us begin by showing that this newly constructed

[α] � [β] is exact, and thus actually a member of Sn(M,N). For this, let us

give names to these maps, so we can more easliy refer to them. So suppose

α and β are as above, but with the maps labeled

α : 0→ N
dαn+1−−−→ An

dαn−→ · · ·
dα2−→ A1

dα1−→M → 0

β : 0→ N
dβn+1−−−→ Bn

dβn−→ · · ·
dβ2−→ B1

dβ1−→M → 0.

Also, the pullback of dα1 and dβ1 is (K, iα1 , j
β
1 ), so iα1 : K → A1 and jβ1 : K → B1

such that dα1 i
α
1 = dβ1j

β
1 . The pushout of dαn+1 and dβn+1 is (T, iα2 , j

β
2 ), so

iα2 : An → T and jβ2 : Bn → T such that iα2d
α
n+1 = jβ2 d

β
n+1. We label the

maps T
εα2−→ An−1, T

εβ2−→ Bn−1, A2

dα2⊕0
−−−→ K, and B2

0⊕dβ2−−−→ K from the above

exact sequences. So the final Baer sum will be the equivalence class of the

following sequence:

0→ N
iα2 d

α
n+1−−−−→ T

εα2⊕ε
β
2−−−→ An−1 ⊕Bn−1

dαn−1⊕d
β
n−1−−−−−−→ · · ·
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dα3⊕d
β
3−−−−→ A2 ⊕B2

dα2⊕d
β
2−−−−→ K

dα1 i
α
1−−→M → 0. (1)

Theorem 3.3. Equation (1) above is exact.

Proof. We need to show all of the following:

1. Im (dα1 i
α
1 ) = M

2. ker (dα1 i
α
1 ) = Im (dα2 ⊕ d

β
2 )

3. ker (dαi ⊕ d
β
i ) = Im (dαi+1 ⊕ d

β
i+1) for all i = 2, . . . , n− 2

4. ker (dαn−1 ⊕ d
β
n−1) = Im (εα2 ⊕ ε

β
2 )

5. ker (εα2 ⊕ ε
β
2 ) = Im (iα2d

α
n+1)

6. ker (iα2d
α
n+1) = 0.

We begin:

1. Im (dα1 i
α
1 ) = M .

By Theorem 2.8, iα1 is surjective because dβ1 is surjective. Also, we know

that dα1 is surjective. Thus, dα1 i
α
1 is surjective, and Im (dα1 i

α
1 ) = M .

2. ker (dα1 i
α
1 ) = Im (dα2 ⊕ d

β
2 ).

Suppose (a, b) ∈ ker (dα1 i
α
1 ), so iα1 (a, b) ∈ ker dα1 . But remember that

iα1 (and iβ1 ) are restricted projections, so iα1 (a, b) = a. Therefore, a ∈

ker dα1 = Im dα2 , so a = dα2 (za) for some za ∈ A2. Similarly, since (a, b) ∈

K, then dα1 (a) = dβ1 (b) = 0, and we have b = dβ2 (zb) for some zb ∈ B2.
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Thus, choosing (za, zb) ∈ A2⊕B2, (dα2 ⊕d
β
2 )(za, zb) = (dα2 (za), d

β
2 (zb)) =

(a, b), so (a, b) ∈ Im (dα2 ⊕ d
β
2 ), so ker (dα1 i

α
1 ) ⊆ Im (dα2 ⊕ d

β
2 ).

Conversely, if (a, b) ∈ Im (dα2 ⊕ dβ2 ), then (a, b) = (dα2 (za), d
β
2 (zb)) for

some za ∈ A2, zb ∈ B2. Then dα1 (iα1 ((a, b))) = dα1 (iα1 ((dα2 (za), d
β
2 (zb)))) =

dα1 (dα2 (za)) = 0, which means that (a, b) ∈ ker (dα1 i
α
1 ). Hence, ker (dα1 i

α
1 ) =

Im (dα2 ⊕ d
β
2 ).

3. ker (dαi ⊕ d
β
i ) = Im (dαi+1 ⊕ d

β
i+1) for all i = 2, . . . , n− 2.

Clear because ker dαi = Im dαi+1 and ker dβi = Im dβi+1.

4. ker (dαn−1 ⊕ d
β
n−1) = Im (εα2 ⊕ ε

β
2 ).

Let us first recall from Theorem 2.7 that εα2 ⊕ ε
β
2 : T → An−1 ⊕ Bn−1

by (εα2 ⊕ ε
β
2 )(x, y) = (εα2 ((x, y)), εβ2 ((x, y))) = (dαn(x), dβn(y)), where the

line over (x, y) represents the equivalence class in T .

From this it is clear that since ker dαn−1 = Im dαn = Im εα2 and ker dβn−1 =

Im dβn = Im εβ2 , then ker (dαn−1 ⊕ d
β
n−1) = Im (εα2 ⊕ ε

β
2 ).

5. ker (εα2 ⊕ ε
β
2 ) = Im (iα2d

α
n+1).

Let (a, b) ∈ T . Then (a, b) ∈ Im (iα2d
α
n+1) if and only if (a, b) =

iα2 (dαn+1(z)) for some z ∈ N . But iα2 (dαn+1(z)) = (dαn+1(z), 0), which

is equal to (a, b) if and only if a− dαn+1(z) = −dαn+1(y) and b = dβn+1(y)

for some y ∈ N , which is equivalent to saying

a = dαn+1(z − y) and b = dβn+1(y)
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for some y, z ∈ N .

On the other hand, (a, b) ∈ ker (εα2 ⊕ εβ2 ) ⇐⇒ (εα2 ⊕ εβ2 )((a, b)) =

(0, 0) ⇐⇒ (εα2 ((a, b)), εβ2 ((a, b))) = (0, 0) ⇐⇒ εα2 ((a, b)) = 0 and εβ2 ((a, b)) =

0 ⇐⇒

dαn(a) = 0 and dβn(b) = 0.

From these two points, it is clear that ker (εα2 ⊕ ε
β
2 ) = Im (iα2d

α
n+1).

6. ker (iα2d
α
n+1) = 0.

Suppose x ∈ ker (iα2d
α
n+1). Then iα2 (dαn+1(x)) = 0 in T , so iα2 (dαn+1(x)) =

(−dαn+1(y), dβn+1(y)) for some y ∈ N . But iα2 (dαn+1(x)) = (dαn+1(x), 0),

so we get dαn+1(x) = dαn+1(−y) and dβn+1(y) = 0. Since dβn+1 is injective,

this means that y = 0, so dαn+1(x) = 0 and x = 0, since dαn+1 is injective.

thus, ker (iα2d
α
n+1) = 0.

This allows us to move forward with a main result.

Theorem 3.4. For any n ≥ 1, Tn(M,N) ∼= ExtnR(M,N).

Proof. Let us construct the bijection

ϕ : ExtnR(M,N)→ Tn(M,N).

Suppose [f ] ∈ ExtnR(M,N), as derived from projective resolution M from the

previous section. Then f is a cocycle such that f : Mn → N and fdMn+1 = 0.
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This means that ker dMn = Im dMn+1 ⊆ ker f . Since Im dMn = ker dMn−1 ⊆

Mn−1, we have an exact sequence

0→ Im dMn
ι−→Mn−1

dMn−1−−−→ · · · →M0 →M → 0,

where ι is the natural injection. From this we will construct a member of

Tn(M,N).

Define f ′ : Im dMn → N as follows. Let x ∈ Im dMn ⇐⇒ x = dMn (y) for

some y ∈ Mn. We will define f ′(x) = f(y). This is well-defined because if

y1, y2 ∈ Mn such that dMn (y1) = x = dMn (y2), then y1 − y2 ∈ ker dMn ⊆ ker f .

So f(y1 − y2) = 0 =⇒ f(y1)− f(y2) = 0 =⇒ f(y1) = f(y2).

With this function f ′, we call on Theorem 2.7 to create the exact sequence

α in the bottom row of the diagram

0 // Im dMn
ι //

f ′

��

Mn−1

dMn−1 //

i

��

· · · //M0
//M // 0

α : 0 // N
j // T // · · · //M0

//M // 0,

where (T, i, j) is the pushout of ι and f ′.

We can finally construct our ϕ : ExtnR(M,N) → Tn(M,N) by setting

ϕ([f ]) = [α]. As always, we must first show that ϕ is well-defined. Suppose

[f ], [g] ∈ ExtnR(M,N) such that [f ] = [g] ⇐⇒ f − g = bdMn for some

b : Mn−1 → N . Using the same notation as above (just subscripted for

clarity), let (Tf , if , jf ) be the pushout of ι and f ′, and let (Tg, ig, jg) be the
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pushout of ι and g′. We need to show that ϕ([f ]) = ϕ([g]), so we need to

find a map h : Tf → Tg such that the following diagram commutes:

ϕ([f ]) : 0 // N
jf // Tf //

h
��

· · · //M0
//M // 0

ϕ([g]) : 0 // N
jg // Tg // · · · //M0

//M // 0.

Note that for x ∈ Im dMn , x = dMn (y) for some y ∈ Mn, just as stated

above. We defined f ′(x) = f(y) and analagously g′(x) = g(y). But since

f − g = bdMn , we have f ′(x) = f(y) = g(y) + b(dMn (y)) = g′(x) + b(x).

For (m,n) ∈ Tf , define h((m,n)) = (m,n+ b(m)) ∈ Tg. To show

that h is well-defined, suppose (m1, n1), (m2, n2) ∈ Tf such that (m1, n1) =

(m2, n2) ⇐⇒ m1 − m2 = ι(x) and n1 − n2 = −f ′(x) = −g′(x) − b(x) for

some x ∈ Im dMn . Recall that ι is a natural injection (⊆), so ι(x) = x and

m1 −m2 = x. To show that h((m1, n1)) = h((m2, n2)), we must show that

(m1, n1 + b(m1)) = (m2, n2 + b(m2)) ⇐⇒ m1−m2 = ι(y) and n1 + b(m1)−

n2 − b(m2) = −g′(y) for some y ∈ Im dMn . Notice that choosing y = x is

satisfactory, because m1 − m2 = ι(x) = x and n1 + b(m1) − n2 − b(m2) =

(n1 − n2) + b(m1 − m2) = (−g′(x) − b(x)) + (b(x)) = −g′(x). Thus, h is

well-defined.

To show that h makes the diagram commute, we only need to make a

simple check that hjf = jg: for n ∈ N , h(jf (n)) = h((0, n)) = (0, n+ b(0)) =

(0, n+ 0) = (0, n) = jg(n), taking note of whether we are in equivalence

classes of Tf or Tg.
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This all shows that ϕ is well-defined. Now we turn our attention towards

proving that ϕ is indeed a bijection. We will do this by finding an inverse

function

ψ : Tn(M,N)→ ExtnR(M,N),

which we will define with some ideas from Weibel [3].

If [α] ∈ Tn(M,N), then we can use the projective resolution M of M to

induce a chain map {hi} from M to α induced by dM0 in a manner similar to

that of Theorem 2.3, best explained by the following commutative diagram:

· · · //Mn+1

dMn+1 //

hn+1

��

Mn

dMn //

hn
��

Mn−1

dMn−1 //

hn−1

��

· · · dM1 //M0

dM0 //

h0

��

dM0

  BBBBBBBB M // 0

α : 0 // N // Xn
// · · · // X1

//M // 0.

From commutativity we have hnd
M
n+1 = 0, so hn ∈ ker (dMn+1

∗
); that is,

[hn] ∈ ExtnR(M,N).

We define ψ([α]) = [hn] and must now show that ψ is well-defined. So

suppose [α], [β] ∈ Tn(M,N) such that [α] = [β]. It suffices to assume that

α ' β, so we have a sequence of maps {ei : Ai → Bi}ni=1 such that the

following diagram commutes

α : 0 // N // An //

en
��

· · · // A1
//

e1
��

M // 0

β : 0 // N // Bn
// · · · // B1

//M // 0.
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We need to show that ψ([α]) = ψ([β]) ⇐⇒ ψ([α])− ψ([β]) = bdMn for some

b : Mn−1 → N .

Let ψ([α]) = [hαn] and ψ([β]) = [hβn] as described by the following dia-

grams:

· · · //Mn+1

dMn+1 //

hαn+1

��

Mn

dMn //

hαn
��

Mn−1

dMn−1 //

hαn−1

��

· · · dM1 //M0

dM0 //

hα0
��

M // 0

α : 0 // N
dαn+1 // An

dαn // · · · dα2 // A1

dα1 //M // 0

and

· · · //Mn+1

dMn+1 //

hβn+1

��

Mn

dMn //

hβn
��

Mn−1

dMn−1 //

hβn−1
��

· · · dM1 //M0

dM0 //

hβ0
��

M // 0

β : 0 // N
dβn+1 // Bn

dβn // · · ·
dβ2 // B1

dβ1 //M // 0.

Putting this together with the diagram relating α and β, we get

· · · //Mn+1

dMn+1 //

hαn+1

��

Mn

dMn //

hαn
��

Mn−1

dMn−1 //

hαn−1

��

· · · dM1 //M0

dM0 //

hα0
��

M // 0

α : 0 // N
dαn+1 // An

dαn //

en
��

· · · dα2 // A1

dα1 //

e1
��

M // 0

β : 0 // N
dβn+1 // Bn

dβn // · · ·
dβ2 // B1

dβ1 //M // 0.

From this we see dM0 = dβ1e1h
α
0 , and thus any two chain maps induced from

these two maps are chain homotopic. In particular, {ei+1h
α
i }n−1

i=1 ∼ {h
β
i }n−1

i=1 .

So, defining Bn+1 = N , there exists a sequence of maps {fi : Mi−1 →
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Bi+1}ni=1, such that

ei+1h
α
i − h

β
i = dβi+2fi+1 + fid

M
i

for all i = 1, . . . , n− 1. In particular,

enh
α
n−1 − h

β
n−1 = dβn+1fn + fn−1d

M
n−1.

Now we will show that hαn − hβn = bdMn for some b : Mn−1 → N . To this end,

note first that dβn+1h
α
n = enh

α
n−1d

M
n from the above diagram, and dβn+1h

β
n =

hβn−1d
M
n , since {hi} is a chain map. So dβn+1(hαn − hβn) = dβn+1h

α
n − d

β
n+1h

β
n =

enh
α
n−1d

M
n − hβn−1d

M
n = (enh

α
n−1 − hβn−1)dMn = (dβn+1fn + fn−1d

M
n−1)dMn =

dβn+1fnd
M
n + fn−1d

M
n−1d

M
n = dβn+1fnd

M
n + 0 = dβn+1fnd

M
n . To summarize,

dβn+1(hαn − hβn) = dβn+1fnd
M
n ,

and since dβn+1 is injective, this means that

hαn − hβn = fnd
M
n ,

where fn : Mn−1 → N . Thus, hαn ∼ hβn and ψ([α]) = [hαn] = [hβn] = ψ([β]).

We have thus shown that both ϕ and ψ are well-defined. We must now

show that ϕ−1 = ψ; that is, we will show that ψϕ = 1ExtnR(M,N) and ϕψ =

1Tn(M,N).
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Let [f ] ∈ ExtnR(M,N), so f : Mn → N and fdMn+1 = 0. As described

before, ϕ([f ]) = [α], where we have

α : 0→ N
j−→→ T →Mn−2 → · · · →M0 →M → 0,

using the notation from when we first defined ϕ at the beginning of the proof.

We now take ψ([α]). Notice that the following diagram is commutative, so

ψ([α]) ∼ f , since we have just show that ψ is well-defined:

· · · //Mn+1

dMn+1 //

��

Mn
dMn //

f

��

Mn−1
//

i

��

Mn−2
// · · · //M0

//M // 0

α : 0 // N
j // T //Mn−2

// · · · //M0
//M // 0.

The fact that this diagram is commutative follows directly because the orig-

inal pushout diagram is commutative, and since fdMn+1 = 0. Thus, ψϕ =

1ExtnR(M,N).

Now, let [α] ∈ Tn(M,N). Then, once more using the notation already

established earlier in proof, ψ([α]) = [hn], where hn : Mn → N is defined by

· · · //Mn+1

dMn+1 //

hn+1

��

Mn

dMn //

hn
��

Mn−1

dMn−1 //

hn−1

��

· · · dM1 //M0

dM0 //

h0

��

M // 0

α : 0 // N
dαn+1 // An

dαn // · · · dα2 // A1

dα1 //M // 0.

Then ϕ([hn]) = [β] will be the following exact sequence, where we once more
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use the same notation as previously established:

β 0→ N
j−→ T →Mn−2 → · · · →M0 →M → 0.

But from above, we have a natural chain map from β to α, so ϕ([hn]) = [α]

and ϕψ = 1Tn(M,N).

We have shown that ϕ and ψ are bijections, so all that remains to be

shown is that ψ is a homomorphism, so it preserves sums. So let [α], [β] ∈

Tn(M,N) as described above. We will show that the diagram below is com-

mutative, so ψ([α] � [β]) = ψ([α]) + ψ([β]). Suppose ψ([α]) = [{hαn}] and

ψ([β]) = [{hβn}]. Then the diagram is as follows, using the same notation as

set up when defining the Baer sum:

· · ·
dMn+1 //Mn

dMn //

hαn+hβn
��

Mn−1

dMn−1 //

hαn−1⊕h
β
n−1

��

Mn−2
//

hαn−2⊕h
β
n−2

��

· · · //M1

dM1 //

hα1⊕h
β
1

��

M0

dM0 //

hα0⊕h
β
0

��

M // 0

0 // N
iα2 d

α
n+1

// T
εα2⊕ε

β
2

// An−1 ⊕Bn−1
// · · · // A2 ⊕B2

dα2⊕d
β
2

// K
dα1 i

α
1

//M // 0.

It is actually a relatively simple exercise that the diagram commutes. The

only square that needs a little work is the first and last square. So letm ∈M0.

Then (dα1 i
α
1 (hα0 ⊕ hβ0 ))(m) = dα1 (iα1 (hα0 (m), hβ0 (m))) = dα1 (hα0 (m)) = dM0 (m).

Thus, the first square commutes.

Now we work on the last square; so let k ∈Mn. Then iα2d
α
n+1(hαn+hβn)(k) =
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iα2 (dαn+1(hαn(k) + hβn(k))) = iα2 (dαn+1(hαn(k)) + dαn+1(hβn(k))) =

(dαn+1(hαn(k)) + dαn+1(hβn(k)), 0).

From the other part of the square, ((hαn−1 ⊕ h
β
n−1)dMn )(k) = (hαn−1(dMn (k)), hβn−1(dMn (k))) =

(dαn+1(hαn(k)), dβn+1(hβn(k))).

We will show that these two elements are equal in T . This is clear from

the fact that when we subtract the two elements, their difference is in the

ideal quotiented out to form T: (dαn+1(hαn(k)) + dαn+1(hβn(k)))− dαn+1(hαn(k)) =

dαn+1(hβn(k)), and 0 − dβn+1(hβn(k)) = −dβn+1(hβn(k)), noting that hβn(k) ∈ N .

Thus, the last square commutes.

From this, we see that ψ preserves sums. This finally ends the proof that

Tn(M,N) ∼= ExtnR(M,N).

Note that we did not define T0(M,N). This is because it is a somewhat

more unnatural definition which must be given its own consideration, which

we will do now. So define

T0(M,N) = HomR(M,N).

Proposition 3.5. T0(M,N) ∼= Ext0
R(M,N).
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Proof. We will construct the isomorphism, once again sticking with the same

notation for a projective resolution of M as already established. So let f ∈

Ext0
R(M,N). Then f : M0 → N such that d∗1(f) = fd1 = 0. Therefore,

ker f ⊇ Im d1 = ker d0. Now let x ∈ M . Because d0 is surjective, there

exists some m ∈ M0 such that d0(m) = x. Define f ′ : M → N by f ′(x) =

f(m). This is well-defined, because if m1,m2 ∈ M0 such that d0(m1) =

d0(m2), then d0(m1 −m2) = 0 and m1 −m2 ∈ ker d0 ⊆ ker f , which implies

that f(m1 − m2) = 0, so f(m1) = f(m2). We define our isomorphism

Ext0
R(M,N)→ T0(M,N) by sending f 7→ f ′. The reader can verify that the

inverse map T0(M,N) → Ext0
R(M,N) is the map which sends g : M → N

to gd0 : M0 → N . Note that gd0 ∈ Ext0
R(M,N) because d∗1(gd0) = (gd0)d1 =

g(d0d1) = g0 = 0.

Because we define the sum of two elements in T0(M,N) to be the natural

sum of maps, the isomorphism is clearly a homomorphism which preserves

sums.

4 THE EXT-ALGEBRA

Now that we have shown two seemingly unrelated definitions of the Ext

groups which are actually equivalent, we can begin to develop the algebra

structure which makes these groups of particular interest.

Throughout this section, M , N , and P are all R-modules with given

projective resolutions (Mi, d
M
i ), (Ni, d

N
i ), and (Pi, d

P
i ), respectively.
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We define the Ext-Algebra of M to be

ExtR(M,M) =
∞∑
i=0

ExtiR(M,M).

This is a graded algebra for which we will define the multiplicative structure

below, for each of the two descriptions of the Ext groups.

4.1 Multiplicative Structure

The definition of ExtR(M,M) forms a graded algebra in the sense that there

is a natural multiplication from

ExtjR(N,P )× ExtiR(M,N)→ Exti+jR (M,P ).

Let us describe this multiplication.

4.1.1 From a Projective Resolution

In this subsection, we will be using the definition of the Ext functors from

projective resolutions. That is,

ExtiR(M,N) = ker(dMi+1

∗
)/Im(dMi

∗
).

Let [f ] ∈ ExtiR(M,N) and [g] ∈ ExtjR(N,P ). We recall that by Theorem

3.1, this definition of the Ext groups is naturally equivalent to considering

the maps as their induced chain maps. So let f̄ = {fk : Mi+k → Nk}∞k=0
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and ḡ = {gk : Nj+k → Pk}∞k=0 be the induced chain mpas of degree −i and

−j, respectively. We will describe the multiplication over these chain maps.

Denoting the multiplication by juxtaposition, we define

[g][f ] = {gkfj+k : Mi+j+k → Pk}∞k=0.

Clearly [g][f ] ∈ Exti+jR (M,P ), as depicted by the following commutative

diagram:

· · · //Mi+j+k
//

fj+k
��

· · · //Mi+j+1
//

fj+1

��

Mi+j
//

fj
��

· · ·

· · · // Nj+k
//

gk

��

· · · // Nj+1
//

g1

��

Nj
//

g0

��

· · ·

· · · // Pk // · · · // P1
// P0

// P // 0.

Proposition 4.1. This multiplication from ExtjR(N,P ) × ExtiR(M,N) →

Exti+jR (M,P ) is well-defined.

Proof. Let [f ] and [g] be as above, and let [f ′] ∈ ExtiR(M,N) and [g′] ∈

ExtjR(N,P ) such that [f ] = [f ′] and [g] = [g′]. If we let f̄ ′ = {f ′k : Mi+k →

Nk}∞k=0 and ḡ′ = {g′k : Nj+k → Pk}∞k=0 be induced chain maps from f ′ and g′,

repectively, then this means that f̄ ∼ f̄ ′ and ḡ ∼ ḡ′. In other words, there

exist sequences of maps {ak : Mi+k → Nk+1} and {bk : Nj+k → Pk+1} such

that

fk − f ′k = dNk+1ak + ak−1d
M
i+k
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and

gk − g′k = dPk+1bk + bk−1d
N
j+k

for k ≥ 1. We need to show ḡf̄ ∼ ḡ′f̄ ′; that is, we must find a sequence of

maps {ck : Mi+j+k → Pk+1} such that

gkfj+k − g′kf ′j+k = dPk+1ck + ck−1d
M
i+j+k.

Let ck = bkfj+k + g′k+1aj+k. Then

dPk+1ck + ck−1d
M
i+j+k = dPk+1(bkfj+k + g′k+1aj+k) + (bk−1fj+k−1 + g′kaj+k−1)dMi+j+k

= dPk+1bkfj+k + dPk+1g
′
k+1aj+k + bk−1fj+k−1d

M
i+j+k + g′kaj+k−1d

M
i+j+k

= (dPk+1bkfj+k + bk−1fj+k−1d
M
i+j+k) + (dPk+1g

′
k+1aj+k + g′kaj+k−1d

M
i+j+k)

= (dPk+1bkfj+k + bk−1d
N
j+kfj+k) + (g′kd

N
j+k+1aj+k + g′kaj+k−1d

M
i+j+k)

= (dPk+1bk + bk−1d
N
j+k)fj+k + g′k(d

N
j+k+1aj+k + aj+k−1d

M
i+j+k)

= (gk − g′k)fj+k + g′k(fj+k − f ′j+k)

= gkfj+k − g′kfj+k + g′kfj+k − g′kf ′j+k

= gkfj+k − g′kf ′j+k.

Thus, our maps are chain homotopic and therefore in the same equivalence

class, so the multiplication is well-defined.
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4.1.2 Yoneda Product

In this subsection, we will be using the definition of the Ext groups as equiv-

alence classes of exact sequences. That is, letting [α] ∈ ExtiR(M,N) and

[β] ∈ ExtjR(N,P ), we have

α : 0 // N // Ai // · · · // A1
//M // 0,

β : 0 // P // Bj
// · · · // B1

// N // 0.

Define the Yoneda product [β][α] ∈ Exti+jR (M,P ) to be the equivalence of

the exact sequence formed by splicing α and β together at N :

βα : 0→ P → Bj → · · · → B1 → Ai → · · · → A1 →M → 0,

where the map B1 → Ai is the composition of B1 → N → Ai. It is clear

that this is indeed an exact sequence.

Proposition 4.2. This multiplication from ExtjR(N,P ) × ExtiR(M,N) →

Exti+jR (M,P ) (i, j ≥ 1) is well-defined.

Proof. Let [α] and [β] be defined as above, and let [α′] ∈ ExtiR(M,N) and

[β′] ∈ ExtjR(N,P ) such that [α] = [α′] and [β] = [β′]. Then (without loss of

generality), there exists a sequence of maps (either all up or all down in each
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diagram) such that the following diagrams commute:

α : 0 // N // Ai //
OO

��

· · · // A1
//

OO

��

M // 0

α′ : 0 // N // A′i // · · · // A′1 //M // 0

and

β : 0 // P // Bj
//

OO

��

· · · // B1
//

OO

��

N // 0

β′ : 0 // P // B′j // · · · // B′1 // N // 0.

We can thus create the following diagram, so [βα] 'Y [β′α′], or [β][α] =

[β′][α′]:

βα : 0 // P // Bj
//

OO

��

· · · // B1
//

OO

��

Ai // · · · // A1
//M // 0

0 // P // B′j // · · · // B′1 // Ai //
OO

��

· · · // A1
//

OO

��

M // 0

β′α′ : 0 // P // B′j // · · · // B′1 // A′i // · · · // A′1 //M // 0.

The descriptions of the product when either i or j is 0 follow; recall that

Ext0
R(M,N) = HomR(M,N). For α ∈ Ext0

R(M,N), denote α by M
α−→ N .
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Then the product

ExtjR(N,P )× Ext0
R(M,N)→ ExtjR(M,P )

ExtjR(N,P )× HomR(M,N)→ ExtjR(M,P )

is given by the exact sequence

0→ P → B′j → · · · → B′1 →M → 0

guaranteed by Theorem 2.8, since we have a map M → N and can form the

pullback of that with the map B1 → N . Similarly, the product

Ext0
R(N,P )× ExtiR(M,N)→ ExtiR(M,P )

HomR(N,P )× ExtiR(M,N)→ ExtiR(M,P )

is given by the exact sequence

0→ P → A′i → · · · → A′1 →M → 0

guaranteed by Theorem 2.7, since we have a map N → P and can form the

pushout of that with the map N → Ai. Finally, the product

Ext0
R(N,P )× Ext0

R(M,N)→ Ext0
R(M,P )
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HomR(N,P )× HomR(M,N)→ HomR(M,P )

is given simply by the composition M → N → P . The studious reader can

easily check the well-definedness of these products (the last one is trivial).

4.1.3 Agreement of Products

We will now show that the Yoneda product agrees with the product given

above through the chain map definition of the Ext groups by referring back

to our isomorphism constructed in Theorem 3.4.

Theorem 4.3. For i, j > 0, the two descriptions of the product

ExtjR(N,P )× ExtiR(M,N)→ Exti+jR (M,P )

defined above are equivalent. That is, letting ψ be the isomorphism from the

Yoneda description of ExtnR(M,N) (call it Tn(M,N)) to the projective res-

olution description of ExtnR(M,N) (call it Rn(M,N)) described in Theorem

3.4, if [α] ∈ Ti(M,N) and [β] ∈ Tj(N,P ), then ψ([β][α]) = ψ([β])ψ([α]).

Proof. Denote α and β as usual:

α : 0→ N → Ai → · · · → A1 →M → 0,

β : 0→ P → Bj → · · · → B1 → N → 0.

We know that ψ([α]) = [f ], where f : Mi → N such that fdMi+1 = 0. Likewise,
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ψ([β]) = [g], where g : Nj → P such that gdNj+1 = 0; and ψ([β][α]) = [h],

where h : Mi+j → P such that hdMi+j+1 = 0.

The result follows from the following commutative diagrams:

ψ([α]) : · · · //Mi+1
//Mi

//

fi=f

��

Mi−1
//

fi−1

��

· · · //M0
//

f0
��

M // 0

0 // N // Ai // · · · // A1
//M // 0,

ψ([β]) : · · · // Nj+1
// Nj

//

gj=g

��

Nj−1
//

gj−1

��

· · · // N0
//

g0

��

N // 0

0 // P // Bj
// · · · // B1

// N // 0,

ψ([βα]) : · · · //Mi+j
//

hi+j=h

��

Mi+j−1
//

hi+j−1

��

· · · //Mi
//

hi
��

Mi−1
//

hi−1

��

· · · //M0
//

h0

��

M // 0

0 // P // Bj
// · · · // B1

// Ai // · · · // A1
//M // 0.

We compare these three diagrams to the one below, which represents

ψ([β])ψ([α]).

· · · //Mi+j
//

f ′j
��

Mi+j−1
//

f ′j−1

��

· · · //Mi
//

f ′1
��

Mi−1
//

fi−1

��

· · · //M0
//

f0
��

M // 0

· · · // Nj
//

gj=g

��

Nj−1
//

gj−1

��

· · · // N0
//

g0

��

Ai // · · · // A1
//M // 0

· · · // P // Bj
// · · · // B1

// Ai // · · · // A1
//M // 0.

Here, the f ′k represent the lifting of fi−1 to a chain map between the
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top and middle chain. This diagram in in fact commutative. It is an easy

exercise to show that the middle squares commute, and those are the only

two which require any work. The leftmost downwards composition of maps

represents the map ψ([β])ψ([α]). By construction, it is clear that h ∼ gf ′j,

so ψ([βα]) = [h] = [gf ′j] = ψ([β])ψ([α]).

As in the other theorems above, the previous theorem is also true for

i = 0 or j = 0, as it is constructed to work this way. We omit the proof.

5 EXAMPLES OF EXT-ALGEBRAS

After all these definitions and proofs, it will help to give a few examples to

perhaps clear up a bit of the abstraction. In each subsection, we will choose

a specific ring R and R-module M . From this, we will work our way towards

a presentation of ExtR(M,M), the Ext-algebra of M , where

ExtR(M,M) =
∞∑
i=0

ExtiR(M,M).

Each of the Ext groups is constructed and analyzed through the cohomo-

logical definition. For this we will need a projective resolution of M , so we

note here that, for any n ∈ Z+, Rn is a free and thus projective R-module.

Also note that this section will use many diagrams to depict the elements of

ExtiR(M,M) as homomorphisms.
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5.1 Non-Zero Divisor

Let R be a commutative ring and x ∈ R be a non-zero divisor. Let M =

R/(x). Then

0→ R
x−→ R→M → 0

is a projective resolution of M , where R
x−→ R denotes the map which is

multiplication by x, and R → M denotes the map which sends r to [r] =

r + (x). Applying HomR(−,M) to the deleted resolution, we get

0→ HomR(R,M)
x∗−→ HomR(R,M)→ 0.

Looking closely on what x∗ represents, we recall that for f ∈ HomR(R,M),

(x∗(f))(y) = f(xy) = xf(y) for all x ∈ R. We see that xf(y) = x(y+ (x)) =

0 + (x) in M , so x∗ = 0. Thus, every map in our second sequence is 0, and

the cohomology at each position is just equal to the group at that position.

That is, Ext0
R(M,M) = HomR(R,M) = Ext1

R(M,M), and ExtiR(M,M) = 0

for i > 1. Since HomR(R,M) ∼= M by φ 7→ φ(1), we get that the underlying

structure of ExtR(M,M) is M ⊕M .

We must still discover how the graded product works over these Ext

groups in order to get a presentation of this algebra.

• Let [f ], [g] ∈ Ext0
R(M,M) such that f and g are identified by f = 1 7→

ᾱ and g = 1 7→ β̄, where α, β ∈ M . Then the composition (down

from the first R from the right) of the following diagram denotes the
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multiplication Ext0
R(M,M)× Ext0

R(M,M):

0 // R
x //

17→α
��

R //

17→α
��

f=17→ᾱ

  AAAAAAAA M // 0

0 // R
x //

17→β
��

R //

17→β
��

g=17→β̄

  AAAAAAAA M // 0

0 // R
x // R //M // 0.

That is, [g][f ] = [g(1 7→ α)] = [(1 7→ β̄)(1 7→ α)] = [1 7→ βα]. Thus,

[g][f ] ∈ Ext0
R(M,M) is sent to [βα] under the bijection with M .

• Let [f ] ∈ Ext0
R(M,M) and [g] ∈ Ext1

R(M,M) such that f and g

are once again identified by f = 1 7→ ᾱ and g = 1 7→ β̄, where

α, β ∈ M . Similar to before, composition (down from the second R

from the right) of the following diagram denotes the multiplication

Ext1
R(M,M)× Ext0

R(M,M):

0 // R
x //

17→α
��

R //

17→α
��

f=17→ᾱ

!!BBBBBBBB M // 0

0 // R
x //

1 7→β
��

g=17→β̄

  AAAAAAAA R //M // 0

0 // R
x // R //M // 0.

This is the same composition as above: [g][f ] is identified with [βα] in

M .

• The multiplication Ext0
R(M,M) × Ext1

R(M,M) is very similar to the
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case above and is the exact same result.

• Let [f ], [g] ∈ Ext1
R(M,M) such that, once more, f and g are identified

by f = 1 7→ ᾱ and g = 1 7→ β̄, where α, β ∈ M . Then composition

(down from the first 0 from the left) of the following diagram denotes

the multiplication Ext1
R(M,M)× Ext1

R(M,M):

0

��

// R
x //

17→α
��

f=17→ᾱ

!!BBBBBBBB R //M // 0

0 // R
x //

17→β
��

g=17→β̄

  AAAAAAAA R //M // 0

0 // R
x // R //M // 0.

This multiplication is clearly 0.

Thus, we get a natural graded multiplication on ExtR(M,M) ∼= M ⊕M ,

which has a presentation

ExtR(M,M) ∼= M〈T 〉/(T 2).

Here the isomorphism is (x, y) 7→ x+ yT , where (x, y) ∈M ⊕M .
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5.2 Polynomial Ring in One Variable

Let k be a commutative ring and R = k[x]/(xn) for some n ≥ 2. Let

M = k = R/(x). Then

· · · x // R
xn−1

// R
x // R

xn−1
// R

x // R // k // 0

is a projective resolution of M = k. Applying HomR(−, k) to the deleted

resolution, we would get every coboundary map equal to 0 much like the case

above. Thus, we see that ExtiR(k, k) = HomR(R, k) ∼= k for every i. We now

concern ourselves with the nature of the product. In the following diagrams,

the right-most downwards composition possible is the one of interest.

• Let [f ], [g] ∈ Ext0
R(k, k) (1 7→ ᾱ and 1 7→ β̄, respectively). Then compo-

sition of the following diagram depicts the multiplication Ext0
R(k, k)×

Ext0
R(k, k):

· · · x // R
xn−1

//

α

��

R
x //

α

��

R
xn−1

//

α

��

R
x //

α

��

R //

α

��

f=17→ᾱ

��???????? k // 0

· · · x // R
xn−1

//

β

��

R
x //

β

��

R

β

��

xn−1
//

β

��

R
x //

β

��

R //

β

��

g=17→β̄

��???????? k // 0

· · · x // R
xn−1

// R
x // R

xn−1
// R

x // R // k // 0.

As before, this shows that [g][f ] is identified with βα.

• Let [f ] ∈ Ext0
R(k, k) and [g] ∈ Ext1

R(k, k) (1 7→ ᾱ and 1 7→ β̄, respec-

tively). Then we again look at composition of the following diagram to
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show the product Ext1
R(k, k)× Ext0

R(k, k):

· · · x // R
xn−1

//

α

��

R
x //

α

��

R
xn−1

//

α

��

R
x //

α

��

R //

α

��

f=17→ᾱ

��@@@@@@@@ k // 0

· · · x // R
xn−1

//

βxn−2

��

R
x //

β

��

R
xn−1

//

βxn−2

��

R
x //

β

��

g=17→β̄

��@@@@@@@@ R // k // 0

· · · x // R
xn−1

// R
x // R

xn−1
// R

x // R // k // 0.

We once more see [g][f ] identified with βα.

• The multiplication Ext0
R(k, k) × Ext1

R(k, k) is very similar to the case

above and is, again, the exact same result.

• Let [f ], [g] ∈ Ext1
R(k, k) (1 7→ ᾱ and 1 7→ β̄, respectively). The follow-

ing diagram depicts the multiplication Ext1
R(k, k)× Ext1

R(k, k):

· · · x // R
xn−1

//

αxn−2

��

R
x //

α

��

R
xn−1

//

αxn−2

��

R
x //

α

��

f=17→ᾱ

��@@@@@@@@ R // k // 0

· · · x // R
xn−1

//

βxn−2

��

R
x //

β

��

R
xn−1

//

βxn−2

��

R
x //

β

��

g=17→β̄

��@@@@@@@@ R // k // 0

· · · x // R
xn−1

// R
x // R

xn−1
// R

x // R // k // 0.

This time we find something new. [g][f ] is identified in k with βαxn−2.

If n > 2, this is 0 in k. Otherwise, if n = 2, this product is the same

as before, βα.

• All other cases proceed in the same way as above, with the multiplica-

tion ExtjR(k, k) × ExtiR(k, k) depending only on the parity of j and i.
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We note that this multiplication is commutative, since k is commuta-

tive and the product over the Ext groups is just the natural product

over k or 0. If n = 2, we get the natural multiplication in every case,

whether i and j are odd or even. However, if n > 2, we get that if both

i and j are odd, the multiplication becomes trivial.

With all this, we get the following presentations of the Ext-Algebra.

ExtR(k, k) =


k〈T 〉 n = 2

k〈ξ, η〉/(ξ2, ξη − ηξ) n > 2.

The explicit isomorphism here is as follows, remembering that ExtR(k, k) =∑∞
i=0 ExtiR(k, k) ∼= k ⊕ k ⊕ k ⊕ · · · as sets. In the case n = 2, we map x ∈

k = ExtiR(k, k) via x 7→ xT i. In the case n > 2, we map x ∈ k = ExtiR(k, k)

via

x 7→


xξ i odd

xηi i even.
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