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Abstract

This paper is concerned with the formation of singularities for the
Degasperis-Procesi equation on the line. It is shown that the lifespan
of solutions to the Degaperis-Procesi equation is not affected by the
smoothness or size of the initial profiles, but affected by the shape of
the initial profiles. Criteria guaranteeing wave-breaking for solutions
with certain smooth initial profiles are described in detail and two re-
sults of blow-up solutions are established. The exact blow-up rate and
the blow-up set for a class of initial profiles are also determined.
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1 Introduction

The Degasperis-Procesi (DP) equation

yt + yxu+ 3yux = 0, x ∈ R, t > 0,

with y = u − uxx, was originally derived by Degasperis-Procesi [19] using
the method of asymptotic integrability up to third order as one of three
equations in the family of third order dispersive PDE conservation laws of
the form

(1.1) ut − α2uxxt + γuxxx + c0ux = (c1u2 + c2u
2
x + c3uuxx)x.
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The other two integrable equations in the family are the Korteweg-de Vries
(KdV) equation

ut + uxxx + uux = 0

and the Camassa-Holm (CH) shallow water equation [3, 21, 27],

yt + yxu+ 2yux = 0, y = u− uxx

These three cases exhaust in the completely integrable candidates for (1.1)
by Painlevé analysis. Both the KdV equation [20] and the Camassa-Holm
equation [1, 6, 8, 13, 14] are completely integrable models for the propagation
of shallow water waves. The DP equation is also in dimensionless space-time
variables (x, t) an approximation to the incompressible Euler equations for
shallow water under the Kodama transformation [25, 26] and its asymptotic
accuracy is the same as that of the Camassa-Holm shallow water equation,
where u(t, x) is considered as the fluid velocity at time t in the spatial
x-direction with momentum density y. Degasperis, Holm and Hone [18]
showed the formal integrability of the DP equation as Hamiltonian systems
by constructing a Lax pair and a bi-Hamiltonian structure. The DP equation
is observed a model supporting shock waves [30].

It is well known that the KdV equation is an integrable Hamiltonian
equation that possesses smooth solitons as traveling waves. In the KdV
equation, the leading order asymptotic balance that confines the traveling
wave solitons occurs between nonlinear steepening and linear dispersion.
However, the nonlinear dispersion and nonlocal balance in the CH equation
and the DP equation, even in the absence of linear dispersion, can still
produce a confined solitary traveling waves

u(t, x) = ce−|x−ct|,

traveling at constant speed c > 0, which are called the peakons [3, 18].
Peakons of both equations are true solitons that interact via elastic collisions
under the CH dynamics, or the DP dynamics, respectively. The peakons of
the CH equation are orbitally stable [17].

Note that we can rewrite the DP equation as

(1.2) ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R.

The peakon solitons are not classical solutions of (1.2). They satisfy the
Degasperis-Procesi equation in the conservation law form

(1.3) ut + ∂x

(
1
2
u2 + (1 − ∂2

x)−1

(
3
2
u2

))
= 0, t > 0, x ∈ R.

Recently, Lundmark and Szmigielski [31] presented an inverse scattering ap-
proach for computing n-peakon solutions to Eq.(1.2). Holm and Staley [25]
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studied stability of solitons and peakons numerically to Eq.(1.2). Analogous
to the case of Camassa-Holm equation [9], Henry [24] showed that smooth
solutions to Eq.(1.2) have infinite speed of propagation.

Since its discovery, there has been considerable interest in the Deasperis-
Procesi equation, cf. [14, 24, 28, 30, 32, 36, 37] and the citations therein.
We shall here mention a few typical results. For example, Yin proved local
well-posedness to Eq.(1.2) with initial data u0 ∈ Hs(R), s > 3

2 . Eq.(1.2)
possesses an infinite number of conservation laws, but neither of them control
of the Hs−norm for s ≥ 1. Hence these local existence results cannot be
turned into global ones. The global existence of strong solutions and global
weak solutions and blow-up structure to Eq.(1.2) were investigated in [38,
39]. Coclite and Karlsen [4] obtained global existence results for entropy
weak solutions of Eq.(1.3) belonging to the class of L1(R)∩BV (R) and the
class of L2(R)∩L4(R). Escher, Liu and Yin [22] also established global weak
solutions in H1(R) and blow-up structure for Eq.(1.3).

More recently, Liu and Yin [29] proved that the first blow-up to Eq.(1.2)
must occur as wave breaking and shock waves possibly appear afterwards. It
is shown in [29] that the lifespan of solutions of the DP equation (1.2) is not
affected by the smoothness and size of the initial profiles, but affected by the
shape of the initial profiles. This can be viewed as a significant difference
between the DP equation (or the CH equation ) and the KdV. It is also noted
that the KdV equation, unlike the CH equation or DP equation, does not
have wave breaking phenomena, that is, the wave profile remains bounded,
but its slope becomes unbounded in finite time [34]. For the CH equation,
a procedure to understand the continuation of solutions past wave breaking
has been recently presented by Bressan and Constantin in [2].

Although the DP equation is similar to the CH equation in several as-
pects, we would like to point out that these two equations are truly different.
One of the novel features of Eq.(1.2) is it has not only peakon solitons [18],
u(t, x) = ce−|x−ct|, c > 0 but also shock peakons [5, 30] of the form

u(t, x) = − 1
t+ k

sgn(x)e−|x|, k > 0.

It is easy to see from [30] that the above shock-peakon solutions can be
observed by substituting (x, t) 7−→ (εx, εt) to Eq.(1.2) and letting ε → 0
so that it yields the “derivative Burgers equation” (ut + uux)xx = 0, from
which shock waves form. The periodic shock waves were established by
Escher, Liu and Yin [23].

On the other hand, the isospectral problem in the Lax pair for Eq.(1.2)
is the third-order equation

ψx − ψxxx − λyψ = 0

cf. [18], while the isospectral problem for the Camassa-Holm equation is the
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second order equation

ψxx − 1
4
ψ − λyψ = 0

(in both cases y = u−uxx) cf. [3]. Another indication of the fact that there is
no simple transformation of Eq.(1.2) into the Camassa-Holm equation is the
entirely different form of conservation laws for these two equations [3, 18].
Furthermore, the Camassa-Holm equation is a re-expression of geodesic flow
on the diffeomorphism group [14] or on the Bott-Virasoro group [33], while
no such geometric derivation of the Degasperis-Procesi equation is available.

The following are three useful conservation laws of the Degasperis-Procesi
equation.

E1(u) =
∫
R

y dx, E2(u) =
∫
R

yv dx, E3(u) =
∫
R

u3 dx,

where y = (1 − ∂2
x)u and v = (4 − ∂2

x)−1u, while the corresponding three
useful conservation laws of the Camassa-Holm equation are the following:

F1(u) =
∫
R

y dx, F2(u) =
∫
R

(u2 + u2
x) dx, F3(u) =

∫
R

(u3 + uu2
x) dx.

It is found that the corresponding conservation laws of the Degasperis-
Procesi equation are much weaker than those of the Camassa-Holm equation.
Therefore, the issue of if and how particular initial data generate a blow-up
in finite time is more subtle.

As far as we know, the case of the Camassa-Holm equation is well un-
derstood by now [7, 10, 11, 12, 15, 35] and the citations therein, while the
Degasperis-Procesi equation case is the subject of this paper. The goal
of this paper is to establish two new blow-up results for Eq.(1.2) and to
give precise description of the blow-up set and the blow-up rate as well so
that important physical phenomena of Eq.(1.2) (such as, wave breaking and
shock waves) could be understood deeply. It will be seen in Section 3 that
these two new blow-up results (Theorems 3.1, Theorem 3.2) based on the
steepening lemma [3, 7] depend on some shape of initial profiles which are
different from those in Theorem 4.2 [29].

It was assumed in [29] that there exists only one point x0 ∈ R such that
initial momentum density y0(x0) = 0. Under this assumption, it was shown
that if (x− x0)y0 ≤ 0, then the corresponding solution to Eq.(1.2) blows up
in finite time (Lemma 2.6) and if (x − x0)y0 ≥ 0, then the solution exists
globally (Lemma 2.7). In this paper, we prove that if the initial momentum
density y0 is odd and there exists another zero x0 ∈ [0, ∞) besides x = 0 by
the oddness of y0 such that y0(x0) = 0, then the corresponding solution to
Eq.(1.2) always blows up in finite time (Theorem 3.1, Theorem 3.2). There-
fore, the blow-up results established in the paper give precise descriptions of
wave-breaking phenomena of the DP flow in a different direction. It will be
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seen in Section 3 that we use quite different methods to prove the blow-up
results Theorem 3.1 and Theorem 3.2.

The remainder of the paper is organized as follows. In Section 2, we recall
the local well-posedness of the Cauchy problem of Eq.(1.2) with initial data
u0 ∈ Hs(R), s > 3

2 , the precise blow-up scenario of strong solutions, and
several useful results which are crucial in the proof of blow-up phenomena
for Eq.(1.2) from [36, 39]. Section 3 is devoted to establish two new blow-
up results. In the last section, we give precise descriptions of the blow-up
mechanism with certain initial profiles.

Notation. As above and henceforth, we denote by ∗ the convolution. For
1 ≤ p ≤ ∞, the norm in the Lebesgue space Lp(R) will be written ‖ · ‖Lp ,
while ‖ · ‖Hs , s ≥ 0 will stand for the norm in the classical Sobolev spaces
Hs(R).

2 Preliminaries

Since we shall also use some properties of solutions in Hs(R), s > 3
2 , we

briefly collect the needed results from [29, 36, 39] in order to pursue our
goal.

With y := u − uxx, Eq.(1.2) takes the form of a quasi-linear evolution
equation of hyperbolic type:

(2.1)
{
yt + uyx + 3uxy = 0, t > 0, x ∈ R,
y(0, x) = u0(x) − u0,xx(x), x ∈ R.

Note that if p(x) := 1
2e

−|x|, x ∈ R, then (1−∂2
x)−1f = p∗f for all f ∈ L2(R)

and p∗ (u−uxx) = u. Using this identity, we can rewrite Eq.(2.1) as follows:

(2.2)
{
ut + uux + ∂xp ∗ (3

2u
2) = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

The local well-posedness of the Cauchy problem of Eq.(2.2) with initial data
u0 ∈ Hs(R), s > 3

2 can be obtained by applying the Kato’s theorem [36].
As a result, we have the following well-posedness result.

Lemma 2.1. [36] Given u0 ∈ Hs(R), s > 3
2 , there exist a maximal T =

T (u0) > 0 and a unique solution u to Eq.(1.2) (or Eq.(2.2)), such that

u = u(·, u0) ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)).

Moreover, the solution depends continuously on the initial data, i.e. the
mapping u0 7→ u(·, u0) : Hs(R) → C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) is
continuous and the maximal time of existence T > 0 can be chosen to be
independent of s.
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By using the local well-posedness in Lemma 2.1 and the energy method,
one can get the following precise blow-up scenario of strong solutions to
Eq.(2.2).

Lemma 2.2. [36] Given u0 ∈ Hs(R), s > 3
2 , blow up of the solution u =

u(·, u0) in finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈R

[ux(t, x)]} = −∞.

Consider the following differential equation

(2.3)
{
qt = u(t, q), t ∈ [0, T ),
q(0, x) = x, x ∈ R.

Applying classical results in the theory of ordinary differential equations,
one can obtain the following two results on q which are crucial in the proof
of global existence and blow-up solutions.

Lemma 2.3. [39] Let u0 ∈ Hs(R), s ≥ 3, and let T > 0 be the maximal
existence time of the corresponding solution u to Eq.(2.2). Then the Eq.(2.3)
has a unique solution q ∈ C1([0, T )× R,R). Moreover, the map q(t, ·) is an
increasing diffeomorphism of R with

qx(t, x) = exp
(∫ t

0
ux(s, q(s, x))ds

)
> 0, ∀(t, x) ∈ [0, T ) × R.

Lemma 2.4. [39] Let u0 ∈ Hs(R), s ≥ 3, and let T > 0 be the maximal
existence time of the corresponding solution u to Eq.(2.2). Setting y :=
u− uxx, we have

y(t, q(t, x))q3x(t, x) = y0(x), ∀(t, x) ∈ [0, T ) × R.

Let us finally present a priori estimate and a recent blow-up result for
the Degasperis-Procesi equation.

Lemma 2.5. [29] Assume u0 ∈ Hs(R), s > 3
2 . Let T be the maximal

existence time of the solution u to Eq.(2.2) guaranteed by Lemma 2.1. Then
we have

‖u(t, x)‖L∞ ≤ 3‖u0(x)‖2
L2t+ ‖u0(x)‖L∞ , ∀t ∈ [0, T ].

Lemma 2.6. [29] Let u0 ∈ Hs(R), s > 3
2 . Assume there exists x0 ∈ R such

that {
y0(x) = u0(x) − u0,xx(x) ≥ 0 if x ≤ x0,
y0(x) = u0(x) − u0,xx(x) ≤ 0 if x ≥ x0,

and y0 changes sign. Then, the corresponding solution to Eq.(2.2) blows up
in finite time.
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Lemma 2.7. [29] Assume u0 ∈ Hs(R), s > 3
2 and there exists x0 ∈ R such

that {
y0(x) ≤ 0 if x ≤ x0,
y0(x) ≥ 0 if x ≥ x0.

Then Eq.(2.2) has a unique global strong solution

u = u(., u0) ∈ C([0,∞);Hs(R)) ∩ C1([0,∞);Hs−1(R)).

Moreover, E2(u) =
∫
R
yv dx is a conservation law, where y = (1− ∂2

x)u and
v = (4 − ∂2

x)−1u, and for all t ∈ R+ we have
(i) ux(t, ·) ≥ −|u(t, ·)| on R,
(ii) ‖u‖2

1 ≤ 6‖u0‖4
L2t

2 + 4‖u0‖2
L2‖u0‖L∞t+ ‖u0‖2

1.

3 Blow-up results

Our purpose here is to establish two new blow-up results to Eq.(2.2) with
certain initial profiles different from Lemma 2.6.

The first principal result are stated as follows.

Theorem 3.1. Assume u0 ∈ Hs(R), s > 3
2 and y0(x) = u0(x) − u0,xx(x) is

odd. If there is a x0 > 0 such that{
y0(x) > 0 x ∈ (−∞,−x0),
y0(x) < 0 x ∈ (−x0, 0),

and y0(−x0) = 0, then the corresponding solution u(t, x) to Eq.(2.2) blows
up in finite time.

Proof. By Lemma 2.1 and a simple density argument, we only need to show
that the above theorem holds for s = 3. Let T > 0 be the maximal time of
existence of the solution u to Eq.(2.2) with the initial data u0 ∈ H3(R).

Note that

(3.1) u(t, x) =
e−x

2

∫ x

−∞
eηy(t, η)dη +

ex

2

∫ ∞

x
e−ηy(t, η)dη

and

(3.2) ux(t, x) = −e
−x

2

∫ x

−∞
eηy(η)dη +

ex

2

∫ ∞

x
e−ηy(η)dη.

From the above two relations (3.1) and (3.2), we deduce that

u(t, x) + ux(t, x) = ex
∫ ∞

x
e−ηy(t, η)dη,

u(t, x) − ux(t, x) = e−x

∫ x

−∞
eηy(t, η)dη.

(3.3)
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Since u0(x) = p ∗ y0(x) and y0 is odd, it follows that u0(x) is odd. As
one can check, the function

v(t, x) := −u(t,−x), t ∈ [0, T ), x ∈ R,

is also a solution of Eq.(1.2) in C([0, T );H3)
⋂
C1([0, T );H2) with initial

data u0. By uniqueness we conclude that v ≡ u. Thus, u(t, ·) and y(t, ·) are
odd for any t ∈ [0, T ). Let q(t, ·) be defined in (2.3). Then, q(t, ·) is also
odd for any t ∈ [0, T ).

Since the function q(t, x) is an increasing diffeomorphism of R with
qx(t, x) > 0 with respect to time t, it follows from the assumption of the
theorem and Lemma 2.4

(3.4)
{
y(t, x) > 0 x ∈ (−∞,−q(t, x0)),
y(t, x) < 0 x ∈ (−q(t, x0), 0),

and y(t, q(t,−x0)) = 0 for all t ∈ [0, T ).
In view of (3.3) and (3.4), we have for all t ∈ [0, T )

(3.5) (u− ux)(t, q(t,−x0)) = e−q(t,−x0)

∫ q(t,−x0)

−∞
eηy(t, η)dη > 0

and

(ux + u)(t, q(t,−x0)) = eq(t,−x0)

∫ ∞

q(t,−x0)
e−ηy(t, η)dη

= eq(t,−x0)

[(∫ 0

q(t,−x0)
+
∫ q(t,x0)

0
+
∫ ∞

q(t,x0)

)
e−ηy(t, η)dη

]

= eq(t,−x0)

(∫ 0

q(t,−x0)
[e−η − eη]y(t, η)dη +

∫ ∞

q(t,x0)
e−ηy(t, η)dη

)

≤ eq(t,−x0)

∫ ∞

q(t,x0)
e−ηy(t, η)dη < 0,

(3.6)

where use has been made of the fact that y(t, η) = −y(t,−η) < 0 for η ∈
(q(t, x0), ∞).

From the above two relations (3.5) and (3.6), we may also obtain

(3.7) ux(t, q(t,−x0)) < 0.
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It then follows from (3.3) and (3.4) that for η ∈ (−∞, q(t,−x0)), t ≥ 0

u2(t, η) − u2
x(t, η) =

∫ η

−∞
eξy(t, ξ)dξ

∫ ∞

η
e−ξy(t, ξ)dξ

=
∫ η

−∞
eξy(t, ξ)dξ

(∫ q(t,−x0)

η
e−ξy(t, ξ)dξ +

∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

)

≥
∫ η

−∞
eξy(t, ξ)dξ

∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

=

(∫ q(t,−x0)

−∞
eξy(t, ξ)dξ −

∫ q(t,−x0)

η
eξy(t, ξ)dξ

)∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

≥
∫ q(t,−x0)

−∞
eξy(t, ξ)dξ

∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

= u2(t, q(t,−x0)) − u2
x(t, q(t,−x0)).

(3.8)

Note that (see page 347, (5.8) in [7])

e−x

∫ x

−∞
eη
(
u2

η(t, η) + 2u2(t, η)
)
dη ≥ u2(t, x)

and y(t, q(t,−x0)) = 0 for all t ∈ [0, T ). Hence in view of (2.1), (3.5), (3.6)
and (3.8), we infer from the above inequality that

d

dt
(u− ux)(t, q(t,−x0))

= −qt(t,−x0)(u− ux)(t, q(t,−x0)) + e−q(t,x0)

∫ q(t,−x0)

−∞
eηyt(t, η)dη

= u2
x(t, q(t,−x0)) −

3
2
u2(t, q(t,−x0)) + e−q(t,−x0)

∫ q(t,−x0)

−∞

3
2
eηu2(t, η)dη

= u2
x(t, q(t,−x0)) +

1
2
e−q(t,−x0)

∫ q(t,−x0)

−∞
eη
(
u2(t, η) − u2

η(t, η)
)
dη

− 3
2
u2(t, q(t,−x0)) +

1
2
e−q(t,−x0)

∫ q(t,−x0)

−∞
eη
(
u2

η(t, η) + 2u2(t, η)
)
dη

≥ (u2
x − u2)(t, q(t,−x0)) +

1
2
e−q(t,−x0)

∫ q(t,−x0)

−∞
eη
(
u2(t, η) − u2

η(t, η)
)
dη

≥ 1
2
(u2

x − u2)(t, q(t,−x0))

= −1
2
[(u− ux)(u+ ux)](t, q(t,−x0)) > 0.

(3.9)
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By (3.5) and (3.9), we have

d

dt

(
eq(t,−x0)(u− ux)(t, q(t,−x0))

)
= eq(t,−x0)qt(u− ux)(t, q(t,−x0)) + eq(t,−x0) d

dt
(u− ux)(t, q(t,−x0))

≥ eq(t,−x0)(u2 − uux)(t, q(t,−x0)) +
1
2
eq(t,−x0)(u2

x − u2)(t, q(t,−x0))

=
1
2
eq(t,−x0)(u− ux)2(t, q(t,−x0))

≥ 1
2
eq(t,−x0)(u− ux)(t, q(t,−x0))[(u− ux)(0,−x0)] > 0.

(3.10)

This in turn implies that(
eq(t,−x0)(u− ux)(t, q(t,−x0))

)
≥ e−x0 [(u− ux)(0,−x0)]e

1
2
[(u−ux)(0,−x0)]t.

Thus, in view of the oddness of q and lemma 2.5, we have

− ux(t, q(t,−x0))

≥ [(u− ux)(0,−x0)]e(
1
2
[(u−ux)(0,−x0)]t+q(t,x0)−x0) − u(t, q(t,−x0))

≥ [(u− ux)(0,−x0)]e(
1
2
[(u−ux)(0,−x0)]t−x0) −

(
3‖u0‖2

L2t+ ‖u0‖L∞
)
,

(3.11)

where in the last inequality of the above estimate use has been made of
the L∞ estimate of the solution u in Lemma 2.5 and q(t, x0) > q(t, 0) = 0.
Differentiating Eq.(2.2) with respect to x, in view of ∂2

xp ∗ f = p ∗ f − f , we
have

(3.12) utx + uuxx = −u2
x +

3
2
u2 − p ∗

(
3
2
u2

)
≤ −u2

x +
3
2
u2.

Note that

dux(t, q(t, x))
dt

= uxt(t, q(t, x)) + uxx(t, q(t, x))
dq(t, x)
dt

= utx(t, q(t, x)) + u(t, q(t, x))uxx(t, q(t, x)).
(3.13)

By (3.12) and (3.13), we have

(3.14)
dux(t, q(t,−x0))

dt
≤ −u2

x(t, q(t,−x0)) +
3
2
u2(t, q(t,−x0)).

Suppose that the solution u(t) of Eq.(2.2) exists globally in time t ∈
[0,∞), that is, T = ∞. We will show this leads to a contradiction.

Comparing (3.7) and (3.11) with a priori estimate of u in Lemma 2.5, it
is easy to see that there exists t1 > 0 such that

(3.15) u2
x(t, q(t,−x0) ≥ 3u2(t, q(t,−x0)), t ≥ t1.
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It then follows from (3.14) and (3.15) that

(3.16)
d

dt
f(t) ≤ 3

2
u2(t, q(t,−x0)) − f2(t) ≤ −1

2
f2(t), t ∈ [t1,∞).

where the function f(t) is defined by f(t) = ux(t, q(t,−x0)). In view of
(3.7), we have

f(t) = ux(t, q(t,−x0)) < 0, ∀t ≥ 0.

Thus, solving the differential inequality (3.16) yields

1
f(t1)

− 1
f(t)

+
1
2
(t− t1) ≤ 0, t ≥ t0.

Since − 1
f(t) > 0, it follows that

1
f(t1)

+
1
2
(t− t1) <

1
f(t1)

− 1
f(t)

+
1
2
(t− t1) ≤ 0, t ≥ t0,

which leads to a contradiction as t → ∞. This proves that T < ∞ and
completes the proof of the theorem.

We are now in the position to present second blow-up result.

Theorem 3.2. Assume u0 ∈ Hs(R), s > 3
2 and y0(x) = u0(x) − u0,xx(x) is

odd. If there is a x0 > 0 such that{
y0(x) ≤ 0 x ∈ (−∞,−x0),
y0(x) > 0 x ∈ (−x0, 0),

and y0(−x0) = 0, then the corresponding solution u(t) to Eq.(2.2) blows up
in finite time.

The technique used here is inspired from [3, 7, 10, 11] in study of various
blow-up solutions for the Camassa-Holm equation. Following their general
approach to blow-up solutions to the Camassa Holm equation with some
fine estimates, it enables us to establish this new blow up result for the
Deasperis-Procesi equation (2.2).

Proof. As we mentioned in Theorem 3.1, we only need to show that the
above theorem holds for s = 3. Let T > 0 be the maximal time of existence
of the solution u to Eq.(2.2) with the initial data u0 ∈ H3(R).

By Lemma 2.3 and Lemma 2.4, in view of the assumption of the theorem,
we have

(3.17)
{
y(t, x) ≤ 0 x ∈ (−∞,−q(t, x0)),
y(t, x) > 0 x ∈ (−q(t, x0), 0),

and y(t, q(t,−x0)) = 0 for all t ∈ [0, T ).

11



Next, we assume that u(t, x) does not blow up in finite time, i.e. T = ∞.
Then we will show this leads to a contradiction. Note that if there exists
a t0 > 0 such that ux(t, 0) ≤ 0, then u(x, t) blows up in finite time (see
Theorem 3.3 in [29, 37]). Thus, we know that ux(t, 0) > 0 for all t ≥ 0, that
is,

ux(t, 0) =
∫ ∞

0
e−ξy(t, ξ)dξ = −

∫ 0

−∞
eξy(t, ξ)dξ > 0, ∀t ≥ 0.

Since q(t, x) = −q(t,−x) ∈ (−q(t, x0), 0), ∀x ∈ [−x0, 0], it follows from (3.3)
that ∀x ∈ [−x0, 0],

(ux − u)(t, q(t, x)) = −e−q(t,x)

∫ q(t,x)

−∞
eηy(t, η)dη

= e−q(t,x)

(
−
∫ 0

−∞
eηy(t, η)dη +

∫ 0

q(t,x)
eηy(t, η)dη

)
≥ e−q(t,x)ux(t, 0) > 0.

(3.18)

and

(ux + u)(t, q(t, x)) = eq(t,x)

∫ ∞

q(t,x)
e−ηy(t, η)dη

= eq(t,x)

(∫ ∞

0
e−ηy(t, η)dη +

∫ 0

q(t,x)
e−ηy(t, η)dη

)
≥ eq(t,x)ux(t, 0) > 0.

(3.19)

By Lemma 2.4, we have

y
1
3 (t, q(t, x))qx(t, x) = y

1
3
0 (x), ∀(t, x) ∈ R+ × R.

In view of Hölder’s inequality, we deduce that ∀(t, ξ) ∈ R+ × [−x0, 0],(∫ 0

ξ
(y0(x))

1
3 dx

)3

=
(∫ 0

ξ
(y(t, q(t, x))

1
3 qx(t, x)dx

)3

=

(∫ 0

q(t,ξ)
(y(t, q))

1
3 dq

)3

≤
∫ 0

q(t,ξ)
y(t, q)eqdq

(∫ 0

q(t,ξ)
e−

1
2
qdq

)2

= ((u− ux)(t, q)eq) |0q(t,ξ)
(
−2e−

1
2
q |0q(t,ξ)

)2

=
(
(ux − u)(t, q(t, ξ))eq(t,ξ) − ux(t, 0)

)
e−q(t,ξ)4

(
1 − e

1
2
q
)2

≤ 4(ux − u)(t, q(t, ξ)).

(3.20)
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Thus it is deduced from (3.20) that

(3.21) 0 < c ≡
∫ 0

−x0

eξ
(∫ 0

ξ
(y0(x))

1
3 dx

)6

dξ

≤ 4
∫ 0

−x0

eξ(ux − u)2(t, q(t, ξ))dξ,

where c is a constant depending only on x0 and y0.
By (2.1), it is easy to see that

yt = −yxu− 3yux = −
(
yu+ u2 − u2

x

)
x
.

It then follows that for all (t, x) ∈ [0,∞) × R

d

dt

(
eq(t,x)(u− ux)

)
(t, q(t, x))

= eq(t,x)qt(t, x)y(t, q(t, x)) +
∫ q(t,x)

−∞
eηyt(t, η)dη

= eq(t,x)uy(t, q(t, x)) −
∫ q(t,x)

−∞
eη
(
yu+ u2 − u2

η

)
η
(t, η)dη

= eq(t,x)(u2
x − uux − 1

2
u2)(t, q(t, x)) +

3
2

∫ q(t,x)

−∞
eηu2(t, η)dη

=
1
2
eq(t,x)(ux − u)2(t, q(t, x)) + eq(t,x)

((
1
2
ux − u2

)
(t, q(t, x))

)
+

3
2

∫ q(t,x)

−∞
eηu2(t, η)dη.

(3.22)

The above relation (3.22) then yields that

(3.23) − d

dt
ux(t, 0) = u2

x(t, 0) +
3
2

∫ 0

−∞
eηu2(t, η)dη.

This implies that

(3.24)
∫ ∞

0
u2

x(t, 0)dt ≤ ux(0, 0) < +∞,

where use has been made of the fact that ux(t, 0) > 0, for all t ≥ 0.
Next, we claim that if ux(t, 0) > 0 for all t ≥ 0, then

(3.25)
∫ ∞

0
eq(t,−x0)(ux−u)2(t, q(t,−x0))dt ≤ 2e−x0(ux−u)(0,−x0) < +∞.
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In fact, in view of (3.2) and the oddness of y and q, we have∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ =

∫ ∞

0
e−ξy(t, ξ)dξ +

∫ 0

q(t,−x0)
e−ξy(t, ξ)dξ

=
∫ ∞

0
e−ξy(t, ξ)dξ +

∫ 0

−q(t,x0)
e−ξy(t, ξ)dξ

≥
∫ ∞

0
e−ξy(t, ξ)dξ = ux(t, 0) > 0.

Applying the above estimate, in view of the relation (3.3), it is inferred that
for η ∈ (−∞, q(t,−x0))

u2(t, η) − u2
x(t, η) =

∫ η

−∞
eξy(t, ξ)dξ

∫ ∞

η
e−ξy(t, ξ)dξ

=
∫ η

−∞
eξy(t, ξ)dξ

(∫ q(t,−x0)

η
e−ξy(t, ξ)dξ +

∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

)

≥
∫ η

−∞
eξy(t, ξ)dξ

∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

=

(∫ q(t,−x0)

−∞
eξy(t, ξ)dξ −

∫ q(t,−x0)

η
eξy(t, ξ)dξ

)∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

≥
∫ q(t,−x0)

−∞
eξy(t, ξ)dξ

∫ ∞

q(t,−x0)
e−ξy(t, ξ)dξ

= u2(t, q(t,−x0)) − u2
x(t, q(t,−x0)).

Following the same proof of (3.9), one can obtain

d

dt
(u− ux)(t, q(t,−x0)) ≥

1
2
(u2

x − u2)(t, q(t,−x0)).

From the above inequality, it follows that

d

dt

(
eq(t,−x0)(ux − u)(t, q(t,−x0))

)
= eq(t,−x0)u(ux − u)(t, q(t,−x0)) − eq(t,−x0) d

dt
(u− ux)(t, q(t,−x0))

≤ eq(t,−x0)(uux − u2)(t, q(t,−x0)) −
1
2
eq(t,−x0)(u2

x − u2)(t, q(t,−x0))

= −1
2
eq(t,−x0)(ux − u)2(t, q(t,−x0)).

Integrating both sides of the above inequality with respect to t on [0, T ) for
any T > 0, in view of (3.18), we obtain

1
2

∫ T

0
eq(t,−x0)(ux − u)2(t, q(t,−x0))dt ≤ e−x0(ux − u)(0,−x0) < +∞.
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This proves (3.25). On the other hand, in view of (2.3) and (3.19), we have

(3.26) eqqx = eq+ln qx = e(
R t
0 (ux+u)(t,q)dt+x) ≥ ex, ∀x ∈ [−x0, 0].

By (3.25) and (3.26), it then follows that∫ ∞

0
dt

∫ 0

−x0

ex(ux − u)2(t, q(t, x))dx

≤
∫ ∞

0
dt

∫ 0

−x0

eq(t,x)(ux − u)2(t, q(t, x))qx(t, x)dx

≤
∫ ∞

0
dt

∫ 0

−x0

eq(t,x)[(ux − u)2(t, q) + 2(ux − u)y(t, q)]qx(t, x)dx

≤ −
∫ ∞

0
eq(ux − u)2(t, q) |0q(t,−x0) dt

≤ 2e−x0(ux − u)(0,−x0) <∞.

This contradicts (3.21). Hence it is concluded that T < ∞. This completes
the proof of the theorem.

Remark 3.1. Note that initial momentum density y0 in Theorems 3.1-3.2
can have more than one zero (three zeros), while it has only one zero in the
previous blow-up result Theorem 4.2 [29]. Hence Theorem 4.2 [29] can be
considered to be improved in some sense.

4 Blow-up set and blow-up rate

Our goal in this section is to give a precise description of the blow-up mech-
anism with certain initial profiles. We will show that there is only one point
where the slope of the solution becomes infinity exactly at breaking time.
The main results in this section are in analogy with results established for
the CH equation in [7, 12].

Theorem 4.1. Assume u0 ∈ Hs(R), s > 3
2 and y0(x) = u0(x) − u0,xx(x) is

odd. Let T be the maximal time of existence of the corresponding solution u
to Eq.(2.2) with initial data u0. If there is a x0 > 0 such that{

y0(x) ≤ 0 x ∈ (−∞,−x0),
y0(x) > 0 x ∈ (−x0, 0),

and y0(−x0) = 0, then the solution u(t, x) blows up in finite time only at
zero point. Moreover,

lim
t→T

(
inf
x∈R

{ux(t, x)}(T − t)
)

= lim
t→T

({ux(t, 0)}(T − t)) = −1
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and

lim
t→T

(
sup
x∈R

{ux(t, x)}(T − t)
)

= 0,

while the solution remains uniformly bounded.

Proof. As we mentioned before, here we only need to show that the theorem
holds for s = 3. Let T > 0 be the maximal time of existence of the solution
u to Eq.(2.2) with initial data u0 ∈ H3(R).

By Theorem 3.2, we know that corresponding solution u(t, x) to Eq.(2.2)
with initial data u0 blows up in finite time, i.e. , T < ∞. Following the
same proof of Theorem 3.1 in [22], we can easily obtain that

(4.1) lim
t→T

(
inf
x∈R

{ux(t, x)}(T − t)
)

= −1.

Next, we give a precise description of the blow-up mechanism. Since y0

is odd, as before, we see that u(t, x) and y(t, x) are odd and ux(t, x) is even.
Then we have for (t, x) ∈ [0, T ) × R+

u(t, x) = p ∗ y(t, x) =
1
2

∫
R

e−|x−η|y(t, η)dη

= sinh(x)
∫ ∞

x
e−ηy(t, η)dη + e−x

∫ x

0
sinh(η)y(t, η)dη

(4.2)

and

ux(t, x) = ∂x

[
1
2

∫
R

e−|x−η|y(t, η)dη
]

= cosh(x)
∫ ∞

x
e−ηy(t, η)dη − e−x

∫ x

0
sinh(η)y(t, η)dη.

(4.3)

In particular, in view of the assumption of the theorem, we have

(4.4) ux(t, q(t, x0)) = cosh(q(t, x0))
∫ ∞

q(t,x0)
e−ηy(t, η)dη

− e−q(t,x0)

∫ q(t,x0)

0
sinh(η)y(t, η)dη > 0.

For x > q(t, x0), we deduce from (4.2) and (4.3) that

ux(t, x) = cosh(x)
∫ ∞

x
e−ηy(t, η)dη − e−x

∫ x

0
sinh(η)y(t, η)dη

= (cosh(x) + sinh(x))
∫ ∞

x
e−ηy(t, η)dη − u(t, x)

≥ − | u(t, x) |≥ −(3‖u0‖2
L2T + ‖u0‖L∞).

(4.5)
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For 0 < x < q(t, x0), it follows from (4.2) and (4.3) that

ux(t, x) = cosh(x)
∫ ∞

x
e−ηy(t, η)dη − e−x

∫ x

0
sinh(η)y(t, η)dη

=
cosh(x)
sinh(x)

u(t, x) −
(

cosh(x)
sinh(x)

+ 1
)
e−x

∫ x

0
sinh(η)y(t, η)dη

≥ −cosh(x)
sinh(x)

| u(t, x) |≥ −cosh(x)
sinh(x)

(3‖u0‖2
L2T + ‖u0‖L∞).

(4.6)

From (4.4)-(4.6), we see that for any x 6= 0, the slope ux(t, x) has a lower
bounded on [0, T ).

On the other hand, in view of Lemma 2.5 and p ∗
(

3
2u

2
)
(t, q(t, x)) ≥ 0,

we have

dux(t, q(t, x))
dt

= uxt(t, q(t, x)) + uxx(t, q(t, x))
dq(t, x)
dt

= −u2
x(t, q(t, x)) +

3
2
u2(t, q(t, x)) − p ∗

(
3
2
u2(t, q(t, x)

)
≤ 3

2
u2(t, q(t, x)) ≤ 3

2
(
3‖u0‖2

L2t+ ‖u0‖L∞
)2
.

It then follows that for all (t, x) ∈ [0, T ) × R,

(4.7) ux(t, q(t, x)) ≤ ux(0, x) +
3T
2
(
3‖u0‖2

L2T + ‖u0‖L∞
)2
.

The above inequality shows that for any x ∈ R, the slope ux(t, x) has a
upper bound on [0, T ). Thus, we obtain that the wave breaks in finite time
exact at zero and nowhere else.

We finally give the detail description of the blow-up rate. Referring to
(4.1) and (4.4)-(4.6), in view of Lemma 2.5, we have

lim
t→T

({ux(t, 0)}(T − t)) = lim
t→T

(
inf
x∈R

{ux(t, x)}(T − t)
)

= −1,

while the solution remains uniformly bounded. In addition, by (4.7), we also
have

sup
x∈R

{ux(t, x)} ≤ ux(0, x) +
3T
2
(
3‖u0‖2

L2T + ‖u0‖L∞
)2
, ∀t ∈ [0, T ].

The above inequality implies

lim
t→T

(
sup
x∈R

{ux(t, x)}(T − t)
)

= 0.

This completes the proof of the theorem.
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Remark 4.1. Theorem 3.2 improves the recent result of Theorem 3.3 in
[22].

By Theorem 3.1 and Lemma 2.2, in view of (4.7), one can easily have
the following result.

Theorem 4.2. Assume u0 ∈ Hs(R), s > 3
2 and y0(x) = u0(x) − u0,xx(x) is

odd. Let T be the maximal time of existence of the corresponding solution u
to Eq.(2.2) with initial data u0. If there is a x0 > 0 such that{

y0(x) > 0 x ∈ (−∞,−x0),
y0(x) < 0 x ∈ (−x0, 0),

and y0(−x0) = 0, then T <∞. Moreover,

lim
t→T

(
inf
x∈R

{ux(t, x)}(T − t)
)

= −1 and lim
t→T

(
sup
x∈R

{ux(t, x)}(T − t)
)

= 0,

while the solution remains uniformly bounded.
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