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Abstract

The focus of this work is on numerical solutions to two-factor option pricing par-
tial differential equations with variable interest rates. Two interest rate models, the
Vasicek model and the Cox-Ingersoll-Ross model (CIR), are considered. Emphasis
is placed on the definition and implementation of boundary conditions for different
portfolio models, and on appropriate truncation of the computational domain. An
exact solution to the Vasicek model and an exact solution for the price of bonds
convertible to stock at expiration under a stochastic interest rate are derived. The
exact solutions are used to evaluate accuracy of the numerical simulation schemes.
For the numerical simulations the pricing solution is analyzed as the market com-
pleteness decreases from the ideal complete level to one with higher volatility of
the interest rate and a slower mean-reverting environment. Simulations indicate
that the CIR model yields more reasonable results than the Vasicek model in a less
complete market.
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1 Introduction

The focus of this work is on numerical solutions to two-factor option pricing
partial differential equations with variable interest rates. Emphasis is placed

∗ Corresponding Author,Department of Mathematics, The Univesity of Texas Ar-
lingon, Arlington, Tx 76019-0408. email:jpzhu@uta.edu

Preprint submitted to Elsevier Science 5 January 2007



on the definition and implementation of boundary conditions on an appropri-
ately truncated computational domain. For some limiting parameter ranges,
basic exact solutions are derived and used to benchmark the accuracy of the
numerical simulations.

Two interest rate models, the Vasicek model [11] and the Cox-Ingersoll-Ross
model [5], are considered. To define the two-factor option pricing models, we
follow the standard Black-Scholes model where the return on a portfolio Π
earns the risk-less rate

dΠ = rΠdt. (1)

Here r is the interest rate, which may not be constant. If the portfolio contains
stock, the stochastic differential equation for the stock price S is

dS = rSdt + σSdW1, (2)

where σ is the volatility of the price and W1 denotes a Wiener process in
the risk-neutral world. Since the interest rate may not be constant, we follow
Björk [4] and assume that the dynamics of r is given by

dr = (a − κr − λP Σ)dt + ΣdW2. (3)

Here r̄ is is the long-term average value of the interest rate, κ denotes the
reversion speed to the steady-state value of the interest rate, and a = κr̄.
Additionally Σ measures the volatility of the stochastic rate change [9], λP

is the market price of risk, and W2 denotes a Wiener process in a risk free
probability space. An ideally complete market is characterized by large κ which
defines a fast mean-reverting environment. As κ decreases and Σ increases, the
market is less complete with higher volatility in the interest rate fluctuations
and a slower mean-reverting environment.

Further, the interest rate r may be written as the sum of a constant value, r0,
and a stochastic component x(t)

r = r0 + x(t), (4)

where x(t) follows a decaying Ornstein-Uhlenbeck process. Also r0 is not nec-
essarily r̄. Substituting (4) into (3) we find

dx = −κxdt + rβΣdW2. (5)

For this paper we limit this decaying process to models of the form: β =
1
2
, λP = λ0

√
r

Σ
in the CIR model, and β = 0, λP = λ0 in the Vasicek model,
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with λ0 a (different) constant in both models [9]. The Vasicek model is chosen
for its mathematical simplicity while the CIR model may be the most widely
used model to price bond derivatives, by virtue that this model is designed to
be consistent with the observed term structure of interest rates. Further, we
follow Björk [4] and Rebonato [9] by setting κr̄−κr0−λ0Σ = 0 in the Vasicek
model and κr̄−κr0 −λ0r0 = 0 in the CIR model. These assumptions define x
to be mean reverting to zero. In other words the above formulation defines the
variable x so that it fluctuates around zero before eventually decaying to zero.
Hence, the Vasicek and CIR models impose an explicit mean-reverting drift
to the short rate process. These assumptions may be satisfied by selecting
appropriate values for r0. For example in the Vasicek model we set r0 =

r̄ − λ0Σ

κ
. Hence, r0 represents an average value of the long term interest rate

adjusted by the given market price of risk.

For a two-factor option pricing model with underlying variables S and r de-
fined as above, if we assume there is no correlation between the two Wiener
processes dW1 and dW2, one finds the generalized Black-Scholes PDE [6]

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+ S

∂V

∂S
r − rV +

(Σrβ)2

2

∂2V

∂r2

+
∂V

∂r
(a − κr − λP Σrβ) = 0, (6)

for the option price V . For the Vasicek model [6] this PDE is

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+ S

∂V

∂S
(r0 + x) − (r0 + x)V +

Σ2

2

∂2V

∂x2
− κx

∂V

∂x
= 0. (7)

For the Cox-Ingersoll-Ross model we find

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+ S

∂V

∂S
(r0 + x) − (r0 + x)V +

Σ2(r0 + x)

2

∂2V

∂x2

− a

r0

x
∂V

∂x
= 0. (8)

These equations are subject to initial and boundary conditions. Generally
speaking, derivative pricing models for different financial scenarios may share
a similar pricing partial differential equation (PDE) with adjusted parame-
ters and boundary conditions. For example, Moreno [7] used (7) and (8) to
price the options on bonds with two-factor (Vasicek or CIR) models by defin-
ing market prices of spread and long-term risk. Barone-Adesi, Bermudez and
Hatgioannides [2] solved a two-factor convertible bonds model with calibrated
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parameters for their PDE. Hence, depending upon the boundary conditions
one defines different portfolio compositions. We shall define boundary condi-
tions examining stock and convertible bond portfolios. In this regard if the
above equations are independent of S, then V (S, x, t) = P (x, t) represents
the price of a bond, see [12]. If the equations are independent of x, then we
have the classical Black-Scholes equation for the price of an option in a con-
stant interest rate scenario. We note that the models (7) and (8) reduce to
the pure Black-Scholes analysis in the case of infinitely fast market reaction,
i.e. κ → ∞. The Black-Scholes model is also recovered when x(t) → 0 and
Σ → 0.

Finally, the derivative price obtained by solving the PDE may be summed over
the probability distribution of x(t) to yield the expected price, as discussed in
Section 4.

The remainder of this paper is organized as follows. Section 2 studies boundary
conditions according to different portfolio models. Section 3 derives an exact
solution to the Vasicek model over the domain −r0 ≤ x ≤ ∞, and develops an
exact solution for the price of bonds convertible to stock at expiration under
a stochastic interest rate. The exact solutions are used to evaluate accuracy of
the numerical simulation schemes. Sections 4 through 6 define the numerical
simulation schemes to solve these models over the truncated domain of the
independent variables, and present results of the simulations. For the numer-
ical simulations the pricing solution is analyzed as the market completeness
decreases from the ideal complete level to one with higher volatility of the
interest rate and a slower mean-reverting environment. Simulations indicate
that the CIR model yields more reasonable results than the Vasicek model in
a less complete market.

2 Boundary Conditions

Boundary conditions defining two portfolios will be considered. The first set
of conditions will describe a European call stock option. The second set of
conditions models a convertible bond. The stock price S and interest rate
fluctuation x, defined by the processes (2) and (5), can reach any position
within their natural boundaries. As a result, the solution domain for the mod-
els is −r0 ≤ x < ∞, 0 ≤ t ≤ T and 0 ≤ S < ∞, where T is the expiration
time. Notice that negative interest rates do not exist, which implies the in-
stantaneous fluctuation x(t) can not cross −r0.

4



2.1 Boundary conditions for the stock option model

At the maturity time T , the call option price will be the payoff function

V (S, x, T ) = max(S − K, 0), (9)

as is predefined at the beginning of writing the contract. Here S and V are in
dollars, t is in years, and K is the strike price.

Putting the time element aside, we see there are four faces of the domain
boundary box that need to be considered:

(1) At S = 0, the option is worthless:

V (0, x, t) = 0. (10)

(2) At S = Smax, with Smax large enough to reflect the behavior of the solution
as S → ∞, we will get a payoff S(T )−K at expiration time T . The value
at time t requires discounting back the strike price K and considering
that the price at time t for the underlying asset is simply Smax. Then a
suitable boundary condition is

V (Smax, x, t) = Smax − Ke−
∫ T

t
[r0+x(τ)] dτ

= Smax − KP (x, t), (11)

in which the bond price P (x, t) can be generated by solving (7) or (8)
according to different interest rate models, with P (x, T ) = 1.

(3) At x = xmax, with xmax large enough to reflect the behavior of the solution
as x → ∞, the option value is assumed to be nearly linear with respect
to price S because the bond value reduces to zero and so there is no
discounting part. Hence the option price will be the underlying stock
price only,

V (S, xmax, t) = S. (12)

(4) When x → −r0, some terms in (7) and (8) will disappear and some
terms assume simpler forms. Thus the natural boundary condition at
xmin = −r0 can be written as

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+

Σ2

2

∂2V

∂x2
− κx

∂V

∂x
= 0 (13)

for the Vasicek model and

∂V

∂t
+

σ2S2

2

∂2V

∂S2
− a

r0

x
∂V

∂x
= 0 (14)

for the CIR model.

5



2.2 Boundary conditions for the convertible bond model

The price of a bond that is convertible to stock just at expiration can be solved
for as a superposition of solutions to the general PDEs (7) or (8). By restricting
the conversion to expiration only we avoid the free boundary problem for
determining the location in (S, x, t) space that separates the holding region
from the conversion region. In this case, the value of the bond may be written
as a portfolio including long positions of one share of a call with strike price
K, and K zero coupon bonds with $1 payoff at maturity. Therefore, the value
of the convertible bond is

V (S, x, t) = C(S, x, t) + KP (x, t), (15)

where C is the value of the call option. If we remove any puttable and callable
features for the convertible bond and assume unit conversion ratio, the termi-
nal condition of such a convertible bond can be written as

V (S, x, T ) = max(S − K, 0) + K

= max(S,K). (16)

This concurs with the result drawn by Bermudez and Nogueiras [3]. The
boundary conditions for the convertible bond are analogous to what we have
derived for the call option.

(1) At zero stock price S = 0, the convertible bond behaves like a zero-coupon
bond that pays off $K when it matures. That is,

V (0, x, t) = KP (x, t). (17)

(2) For large stock price Smax, it is almost certain that the bond will be
converted to one share of the stock. Hence

V (Smax, x, t) = Smax. (18)

(3) When x is infinitely large, the bond component tends to zero. Since we
do not enforce any time-dependent constraints of puttable and callable
features, the upper bound and the lower bound to the price of the con-
vertible bond are max(S,∞) and max(S, 0) respectively. Therefore we
define the boundary condition as

V (S, xmax, t) = min(max(S,∞), max(S, 0))

= min(∞, S)

= S. (19)
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(4) For a very small interest rate, instead of taking the homogeneous Neu-
mann condition suggested by Bermudez and Nogueiras [3], the natural
condition as defined in (13) or (14) will be used.

3 Exact Solutions for the Vasicek model

Otto [8] developed an exact solution to (7) subject to (9) - (12). That solution
was not subject to any constraints at x = −r0. Following Otto’s approach and
using the constraint (13) at x = −r0 we find

V (S, x, t) = SN(d1) − KP (x, t)N(d2) (20)

where

d1 =
ln(S/K) − ln(P (x, t)) + σ̂2(T − t)/2

σ̂
√

T − t
, (21)

d2 = d1 − σ̂
√

T − t, (22)

σ̂2 = σ2 + Σ2, (23)

and N(y) is the cumulative normal distribution. The zero coupon bond pricing
equation (7) in terms of Vasicek-like rates is

∂P

∂t
− (r0 + x)P +

Σ2

2

∂2P

∂x2
− κx

∂P

∂x
= 0. (24)

The solution of (24) is of the form

P (x, t) = A(t, T )e−xB(t,T ) (25)

subject to the final condition

P (x, T ) = 1. (26)

It is easily shown that
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B(t, T ) =
1 − eκ(t−T )

κ
(27)

and

A(t, T ) = exp{r0(t − T ) − Σ2

2κ2
[(t − T ) − 2

κ
(eκ(t−T ) − 1) (28)

+
1

2κ
(e2κ(t−T ) − 1)]}

by substituting (25) into the bond pricing equation and solving for A(t, T ) and
B(t, T ) separately. Equations (25), (27) and (28) yield the proper solution
which emphasizes that the value at time t of a zero bond P (x, t) depends
only on the state variable r = r0 + x, i.e. today’s value of the short rate.
It is instructive to verify that (20) satisfies the conditions (10) - (13). When
S → 0, d1 and d2 approach −∞ which leads to zero values for N(d1) and
N(d2), respectively. Thus V (S, x, t) → 0. On the other hand, when S → ∞,
d1 and d2 also approach ∞. Now N(d1) and N(d2) approach one. Hence,
the option value V (S, x, t) = S∞ − KP (x, t). For x → ∞, the bond price
P (x, t) → 0 and thus d1 and d2 approach ∞. Hence the value for V (S, x, t)
is S as x → ∞. As x approaches its lower bound −r0, the natural boundary
condition (13) is satisfied because (20) is clearly a solution of (7).

Notice that the bond equation (24) is a reduced equation for the option pricing
equation (7) with S independence. Hence by the principle of linear superpo-
sition a portfolio with the value

Π(S, x, t) = nC(S, x, t) + k̃P (x, t) (29)

is also a solution to (7). Here the call price C(S, x, t) has strike price K/n and
the solution for C(S, x, t) is (20) with this strike price. If we assume the call
and the bond expire at the same time T , the payoff function for the portfolio
is

Π = n max(S − K

n
, 0) + k̃

= max(nS − K, 0) + k̃. (30)

When k̃ = K, (29) satisfies conditions (16) - (19) and we have the solution for
a bond convertible to n shares of stock at expiration. This solution is valid for
the Vasicek model. We shall obtain a solution numerically for the CIR model.
The superposition solution (29) extends the analytical solution from Bermudez
and Nogueiras [3]. The latter is only valid for constant interest rates.
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4 Probability density functions

For the stochastic interest rate setting, the calculated solutions of (7) and
(8) may be summed over the probability distribution of x(t) to obtain the
expected derivative price.

In order to derive a solution analogous to that for the Black-Scholes equa-
tion, we integrate the option price V (S, x, t) over the risk-neutral probability
distribution density for x(t) appropriate to the Vasicek or CIR model. The
expected option price can then be calculated as

V̄ (S, t) =
∫ ∞

−r0

V (S, x, t)p(xt = x|xT = 0) dx, (31)

where p(xt = x|xT = 0) is the conditional probability density function for
the interest rate fluctuation x(t) given that its value is zero at maturity T .
Considering the processes (5), with β = 0 or 1/2 one can see that they
are both mean-reverting to zero, which makes the explicit forms of transition
probabilities attainable. In general for other interest models, an analytical
solution for the distribution density function is almost impossible to find.

4.1 Probability distribution for the Vasicek model

As discussed by Otto [8], for a Vasicek-like process and given x(0) the value
x(t) is normally distributed with mean µ = e−κtx(0) and variance σ2 =
Σ2

2κ
(1 − e−2κt). The transition probability density function is determined from

the distribution

p(τ, x(0), y)dy =
1√

2πσ2
e−

(y−µ)2

2σ2 dy

=
1

√

πΣ2

κ
(1 − e−2κτ )

e
− κ

Σ2
(y−e−κτ x(0))2

1−e−2κτ dy, (32)

where τ is the time interval for the random variable x to reach the point y,
starting from x(0). Using this we follow Otto to define the backward transition
probability p(xt = x|xT = 0) to describe the probability of x at time t given
that it will surely go to zero at time T .
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4.2 Probability distribution for the CIR model

Since the transition probability is not directly available for x(t) in the frame-
work of the CIR model, we make a change of variables for x(t) by letting
r = x(t) + r0 for positive values of r. Cox et al. [5] give the transition density
function for r as

p(τ, r(0), y)dy = ce−u−v(
v

u
)q/2Iq(2

√
uv)dy, (33)

where c = 2κ
Σ2(1−e−κτ )

, u = cr(0)e−κτ , v = cy, q = 2κr0

Σ2 − 1, and Iq(·) is the
modified Bessel function of the first kind of order q. Cox notes that “r can reach
zero if Σ2 > 2κr0. If 2κr0 ≥ Σ2, the upward drift is sufficiently large to make
the origin inaccessible”, i.e., x has zero probability to hit the boundary −r0.
The following solution procedure is based on the above condition 2κr0 ≥ Σ2

to ensure that the spot rate stays positive. The transition density function is
a non-central chi-square χ2[2cy; 2q + 2; 2u] distribution with 2q + 2 degrees
of freedom and non-centrality parameter 2u. If κ > 0, then as t → ∞, its
distribution will approach a Gamma distribution given by

p̂(z) =
1

Γ(α)βα
zα−1e−z/β, (34)

where α = 2κr0/Σ
2 and β = Σ2/2κ. This is a stationary distribution in the

sense that if x(0) is drawn from this distribution, then x(t) has the same
distribution for all t. To derive the “transition probability of interest” p(rt =
xt + r0|rT = r0), we use Otto’s approach

p(rt = r0 + xt|rT = r0) = p(τ, r(0), y)
p̂(r)

p̂(r0)
(35)

in which p̂(z) is the limit probability density for r as t → ∞, i.e., the density
function for the Gamma distribution. The final expression for the transition
probability in the framework of the CIR model thus reads:

p(xt = x|xT = 0) = p(rt = r0 + xt|rT = r0)

= ce−u−v(
v

u
)q/2Iq(2

√
uv)(1 +

x

r0

)α−1e−x/β (36)

where c = 2(a/r0)

Σ2(1−e−(a/r0)(T−t))
, u = c(x + r0)e

−(a/r0)(T−t), v = cr0, q = 2a
Σ2 − 1,

α = 2a/Σ2, a = κr̄ and β = Σ2r0/2a. Figure 1(a) compares the distributions of
the CIR and Vasicek models. The comparison is based on κ = 5, Σ = 0.2, and
τ = 0.8. The figure suggests that the square-root diffusion in CIR gives a more
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reasonable risk-neutral distribution for x(t). The solid line shows the complete
distribution of x(t) while the dashed curve for the Vasicek process is truncated
because negative short rates are not allowed. We can also see from Figure 1(b)
that if the market is acting more “completely”, i.e. with faster market reaction
rate κ and lower volatility Σ of the interest rate fluctuation, the distributions
for both diffusion processes are approaching the Dirac δ-function. This result
is desirable since in an ideal complete market the integral over the entire
spectrum of x(t) should be exactly the option value at x(t) = 0, that is, the
riskless rate r0.
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Fig.1(a): κ = 5 and Σ = 0.2 at
τ = 0.8 and r0 = 0.08.
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Fig. 1(b): κ = 10 and Σ = 0.1 at
τ = 0.8 and r0 = 0.08.

Fig. 1. Comparison of probability distribution of CIR version (solid) and Vasicek
version (dashed)

5 Numerical Schemes

Equations (7) and (8) can be written in the following general form

∂V

∂t
+ a(S, x, t)

∂2V

∂S2
+ b(S, x, t)

∂V

∂S
+ c(S, x, t)V + d(S, x, t)

∂2V

∂x2
+

e(S, x, t)
∂V

∂x
= 0 (37)

with terminal condition (9). By using τ = T − t, we can rewrite (37) as

∂V

∂τ
= a(S, x, t)

∂2V

∂S2
+ b(S, x, t)

∂V

∂S
+ c(S, x, t)V + d(S, x, t)

∂2V

∂x2
+

e(S, x, t)
∂V

∂x
(38)
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with initial condition

V (0) = max(S − K, 0). (39)

We solve (38) with forward time-stepping using the up-wind Alternating Di-
rection Implicit (ADI) scheme.

5.1 Implementation of boundary conditions

For boundary conditions (13) and (14), one way to simplify the computation is
to completely ignore partial derivatives with respect to x. For comparison, we
also use the one-sided finite difference to approximate the partial derivatives
with respect to x, as suggested by Tavella and Randall [10], although they
only applied it to a one-factor model. When the ADI method is applied to the
two-factor model PDE, each time step progressing from tk to tk+1, involves
two substeps. The partial derivatives with respect to x in (13) and (14) are
treated implicitly in the first substep, i.e. proceeding from tk to tk+ 1

2
, while

those with respect to S are treated explicitly. In the second substep, i.e. pro-
ceeding from tk+ 1

2
to tk+1, the partial derivatives with respect to x in (13) and

(14) are treated explicitly while those with respect to S are treated implicitly.
The curves in Figure 2 represent different solutions to (7) subject to (9)-(12)
with three different approximations for boundary condition (13): With both
∂V/∂x and ∂2V/∂x2, without the second derivative ∂2V/∂x2, and without
any derivatives with respect to x. We plot the curves against the exact solu-
tion (20) (represented by the dashed line). It is clear from the figure that one
cannot completely ignore partial derivatives with respect to x at the leftmost
boundary x = −r0. Even if we reduce the sizes of time and space grids, the
solution without derivatives with respect to x does not converge to the exact
solution. Another observation from Figure 2 is that the second derivative of
x in the boundary condition does not affect the accuracy of the solution as
significantly as does the first derivative. For the remainder of this study, we
use the complete boundary condition (13) or (14) for better accuracy.

Another important issue that affects computational efficiency is the choice of
Smax and xmax to reduce an infinite domain [−r0,∞)×[0,∞) to a finite domain
[−r0, xmax] × [0, Smax] for numerical computations. There has been very little
discussion about this in the existing literature. Since boundary conditions at
xmax and Smax are derived to approximate the behavior as x → ∞ and S → ∞,
it is obvious that larger xmax and Smax will provide better approximations.
However this also means longer computing time since more grid points are
needed to cover the larger computational domain. Our numerical experiments
have indicated that using an Smax that is 2 to 2.5 times the strike price K
usually provides adequate accuracy. For the x-dimension, however, there are

12



94 95 96 97 98 99 100 101 102 103 104

4

5

6

7

8

9

10

11

12

13

14

S

V

BC with the first derivative of x
BC with both the first and second derivatives of x
BC without derivatives of x
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Fig. 2. Comparison of solutions with different boundary condition approximations
with the exact solution (20) for ∆t = 0.001, ∆x = 0.05, ∆S = 1. Parameters are:
T − τ = 0.8, σ = 0.2, Σ = 0.8, κ = 100 and K = 100.

two issues. One is the accuracy of the numerical solution of the model PDEs.
Figure 3(a) shows that the bond price numerical solution with the Vasicek
model, using xmax = 50, matches very well to the exact solution described by
(25) until one or two grid points before xmax. At xmax, we observe a sudden
jump at the end point to satisfy the boundary condition that the bond price
reaches zero as x → ∞. Figure 3(b) shows similar results for both the Vasicek
and CIR models. This is typical in our numerical experiment, which indicates
that the value of xmax does not affect the accuracy of the numerical solutions
significantly.

The final issue is the accuracy of the option price after integrating the nu-
merical solution with respect to x using the proper probability distribution.
Since the normal distribution curve associated with the Vasicek model is very
sensitive to parameters, we were unable to identify a clear correlation be-
tween xmax and the parameters. On the other hand, we noticed that for the
CIR model, the chi-square distribution curve approaches zero near x = 0.4Σ.
Hence xmax ' 0.4Σ is usually adequate for the CIR model. The error caused
by the jump near xmax is generally negligible since the probability distribution
is almost zero there.

6 Numerical results

In Figure 4, the value of a European call option (with boundary conditions (9)-
(14) and K = $50) is shown as a function of both the underlying stock price
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Fig. 3(a): Parameters: κ = 100 and
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Fig. 3. Comparison of numerical solution and the exact solution for the bondprice,
near the truncated computational domain for x(t).

and the instantaneous change of interest rate. The averaged price V̄ is deter-

Fig. 4. The value of a call option as a function of asset S and x in the domain
[−0.08, 1] and [0, 200] for x and S, respectively. Parameters: κ = 100, r0 = 0.08,
σ = 0.2 and Σ = 0.4 at τ = 0.8.

mined by integrating over the probability density of the fluctuation x(t). The
results are shown in Figure 5(a). The trapezoid rule for numerical integration
of (31) is applied for this purpose.
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We relax the assumption of market completeness at different levels by reducing
κ and increasing Σ, and compare the results with the standard Black-Scholes
price with constant interest rate. The term moneyness m = S/K is introduced
as a measure of the degree to which a call option is likely to have monetary
value. Figure 5(a) shows that, over a reasonable range of the moneyness m ' 1,
the price of a European call option under the two frameworks of interest rate
models is close to that from the Black-Scholes model. When the option is
around the at-the-money (m ' 1) value, the curves for both models have a
bell shape with averaged option values higher than that from the Black-Scholes
model due to the stochastic interest rate. The option prices decrease as they go
deep in the money (m À 1). The largest price difference between either model
and the Black-Scholes model is around $0.08. We comment that this small
difference in price between the constant interest rate Black-Scholes model and
the stochastic interest rate models is consistent with the empirical study of
Bakshi, Cao and Chen [1]. That study demonstrated the small influence of
fluctuations in the interest rate on option prices.

Now we examine the situation when the market becomes less “complete”.
Figures 5(b) 5(c) show the curves for both pricing models using the parameters
κ = 5, Σ = 0.2 and κ = 1, Σ = 0.8, respectively. For both cases, the in-the-
money range shows a serious mispricing in the Vasicek model. The option
price decreases below the Black-Scholes price dramatically as the underlying
stock price increases. As we see from Figure 5(a), the situation becomes even
worse for lower κ and higher Σ. To give a clear illustration, Figure 6 shows
a contour plot corresponding to unaveraged price differences for the same
market as Figure 5(b). We see for small x that both models agree with the
Black-Scholes price, whereas for larger x the models deviate from the Black-
Scholes price. The close proximity of the contour levels for small x implies
close agreement between the models. It further implies that the integration
over the probability density causes the obvious difference in average price.
As pointed out in the previous section, the limitation of x ≥ −r0 truncates
the risk-neutral density function curve of the Vasicek model and makes it
incomplete. Hence probability densities weighted on the negative interest rates
will be lost if we increase the degree of market “incompleteness”. This leads
to nonzero probabilities of negative interest rates in the Vasicek model so that
the averaged option is mispriced over a portion of the domain of x. On the
other hand, the CIR model correctly captures the risk neutral distribution
of interest rates and gives a more reasonable price curve in Figure 5(b). A
similar mispricing also occurs in the CIR model in Figure 5(c) simply because
the condition 2κr0 ≥ Σ2 is violated. Figure 7(a) shows the result with fixed
κ and decreasing Σ to prevent mispricing. The plot is similar to Figure 5(b).
Therefore, the CIR model works well for small Σ. The difference between the
call option averaged price from the CIR model and that from the Black-Scholes
model at different times is given in Figure 7(b). Hence the results approach
VB−S as t → T , since x decays to 0.
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Fig. 5(a): Parameters: κ = 10, r0 =
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at τ = 0.8.
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Fig. 5(b): Parameters: κ = 5,
r0 = 0.08, r̄ = 0.07, σ = 0.2 and
Σ = 0.2 at τ = 0.8.
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at τ = 0.8.

Fig. 5. Difference between the call option price and the Black-Scholes value as a
function of moneyness m = S/K, for the yield curves of the Vasicek process and
the CIR process.

Consider the convertible bond portfolio discussed in Section 2.2. To validate
the accuracy of our numerical solution Figure 8(a) is a contour plot of the
difference in value with (29) for n = 1, k̃ = K and the numerical solution for
the Vasicek model. The contour plot of the difference in value between the
Vasicek and CIR models is shown in Figure 8(b). With increasing x or S, the
difference is increasing.

We have shown that the stochastic interest rate model using the CIR pro-
cess outperforms the Vasicek model in accurately describing the risk-neutral
distribution of interest rates. The CIR model nicely produces the price curve
without losing the general characteristics of fluctuating interest rates, provided
that 2κr0 ≥ Σ2. However, in the Vasicek model, serious mispricing could take
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Fig. 6. Contour plots of the difference in price (V (S, r, t) − VB−S) for the Vasicek
model (dashed line) and the CIR model (solid line) on S − x surface. Parameters:
κ = 5, r0 = 0.08, r̄ = 0.07, σ = 0.2 and Σ = 0.2 at τ = 0.8.
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0.08, r̄ = 0.07, σ = 0.2 and Σ = 0.2
at τ = 0.8 (For CIR process only,
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Fig. 7. Difference between the call option price and the Black-Scholes value as a
function of moneyness m = S/K, for the yield curves of the Vasicek process and
the CIR process.

place when the market becomes less complete.
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Fig. 8. Contour plots.

7 Summary

The basic idea of pricing is to determine the risk neutral distribution of the
underlying assets. One approach is to solve the pricing PDE (for example,
Black-Scholes PDE, (7) and (8) etc.) according to different models. Another
nontrivial approach is to simulate the sample paths by using Monte Carlo
simulation, especially in the case that the probability distribution of x(t) is
not known. Such a simulation method is commonly used in practice because
only a limited number of models come with the exact risk-neutral distribution.
The Vasicek and CIR models are in that small pool.

Hence, taking advantage of the exact distributions, we presented and solved
models for stochastic interest rates in an incomplete market. We have shown
that the CIR type model for the interest rate fluctuation gives a better result
than the Vasicek model by preventing mispricing. In summary this paper:

• formulates stochastic interest rate models based on the CIR and Vasicek
processes,

• specifies the boundary conditions for models in Section 2,
• develops numerical schemes to solve these models over the truncated do-

mains of the independent variables,
• shows that the CIR model yields more reasonable results than the Vasicek

model in a less complete market,
• determines an analytical expression of the solution to the Vasicek model
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over the domain −r0 ≤ x ≤ ∞ in Section 3,
• develops an exact solution for the price of bonds convertible to stock at

expiration, and under a stochastic interest rate in Section 3.
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