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Abstract

The Degasperis-Procesi equation can be derived as a member of a one-
parameter family of asymptotic shallow water approximations to the Euler
equations with the same asymptotic accuracy as that of the Camassa-
Holm equation. It is noted that the Degasperis-Procesi equation, unlike
the Camassa-Holm equation, has not only peakon solitons but also shock
peakons. In this paper, we study the orbital stability problem of the
peaked solitons to the Degasperis-Procesi equation on the line. By con-
structing a Liapunov function, we prove that the shapes of these peakon
solitons are stable under small perturbations.
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1 Introduction

The Degasperis-Procesi (DP) equation

yt + yxu + 3yux = 0, x ∈ R, t > 0, (1.1)

with y = u − uxx, was originally derived by Degasperis-Procesi [13] using the
method of asymptotic integrability up to third order as one of three equations
in the family of third order dispersive PDE conservation laws of the form

ut − α2uxxt + γuxxx + c0ux = (c1u
2 + c2u

2
x + c3uuxx)x. (1.2)

The other two integrable equations in the family, after rescaling and applying a
Galilean transformation, are the Korteweg-de Vries (KdV) equation

ut + uxxx + uux = 0

and the Camassa-Holm (CH) shallow water equation [2, 14, 17, 21],

yt + yxu + 2yux = 0, y = u− uxx. (1.3)
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These three cases exhaust in the completely integrable candidates for (1.2) by
Painlevé analysis. Degasperis, Holm and Hone [12] showed the formal integra-
bility of the DP equation as Hamiltonian systems by constructing a Lax pair
and a bi-Hamiltonian structure.

The Camassa-Holm equation was first derived by Fokas and Fuchassteiner
[17] as a bi-Hamiltonian system, and then as a model for shallow water waves
by Camassa and Holm [2]. The DP equation is also in dimensionless space-
time variables (x, t) an approximation to the incompressible Euler equations
for shallow water under the Kodama transformation [19, 20] and its asymptotic
accuracy is the same as that of the Camassa-Holm (CH) shallow water equation,
where u(t, x) is considered as the fluid velocity at time t in the spatial x-direction
with momentum density y.

Recently, Liu and Yin [23] proved that the first blow-up in finite time to
equation (1.1) must occur as wave breaking and shock waves possibly appear
afterwards. It is shown in [23] that the lifespan of solutions of the DP equation
(1.1) is not affected by the smoothness and size of the initial profiles, but affected
by the shape of the initial profiles. This can be viewed as a significant difference
between the DP equation (or the CH equation ) and the KdV. It is also noted
that the KdV equation, unlike the CH equation or DP equation, does not have
wave breaking phenomena, that is, wave remains bounded, but its slope becomes
unbounded in finite time [28].

It is well known that the KdV equation is an integrable Hamiltonian equation
that possesses smooth solitons as traveling waves. In the KdV equation, the
leading order asymptotic balance that confines the traveling wave solitons occurs
between nonlinear steepening and linear dispersion. However, the nonlinear
dispersion and nonlocal balance in the CH equation and the DP equation, even
in the absence of linear dispersion, can still produce a confined solitary traveling
waves

u(t, x) = cϕ(x− ct) (1.4)

traveling at constant speed c > 0, where ϕ(x) = e−|x|. Because of their shape
(they are smooth except for a peak at their crest), these solutions are called the
peakons [2, 12]. Peakons of both equations are true solitons that interact via
elastic collisions under the CH dynamics, or the DP dynamics, respectively. The
peakons of the CH equation are orbitally stable [11]. For waves that approximate
the peakons in a special way, a stability result was proved by a variation method
[10].

Note that we can rewrite the DP equation as

ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R. (1.5)

The peaked solitons are not classical solutions of (1.5). They satisfy the
Degasperis-Procesi equation in the conservation law form

ut + ∂x

(
1
2
u2 +

1
2
ϕ ∗

(
3
2
u2

))
= 0, t > 0, x ∈ R, (1.6)
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where ∗ stands for convolution with respect to the spatial variable x ∈ R. This
is the exact meaning in which the peakons are solutions.

Recently, Lundmark and Szmigielski [25] presented an inverse scattering
approach for computing n-peakon solutions to equation (1.5). Holm and Staley
[19] studied stability of solitons and peakons numerically to equation (1.5).
Analogous to the case of Camassa-Holm equation [6], Henry [18] showed that
smooth solutions to equation (1.5) have infinite speed of propagation.

The following are three useful conservation laws of the Degasperis-Procesi
equation.

E1(u) =
∫

R
y dx, E2(u) =

∫

R
yv dx, E3(u) =

∫

R
u3 dx,

where y = (1− ∂2
x)u and v = (4− ∂2

x)−1u, while the corresponding three useful
conservation laws of the Camassa-Holm equation are the following:

F1(u) =
∫

R
y dx, F2(u) =

∫

R
(u2 + u2

x) dx, F3(u) =
∫

R
(u3 + uu2

x) dx. (1.7)

The stability of solitary waves is one of the fundamental qualitative proper-
ties of the solutions of nonlinear wave equations. Numerical simulations [12, 24]
suggest that the sizes and velocities of the peakons do not change as a result of
collision so these patterns are expected to be stable. Furthermore, it is observed
that the shape of the peakons remains approximately the same as time evolves.
As far as we know, the case of stability of the peakons for the Camassa-Holm
equation is well understood by now [10, 11], while the Degasperis-Procesi equa-
tion case is the subject of this paper. The goal of this paper is to establish a
stability result of peaked solitons for equation (1.5).

It is found that the corresponding conservation laws of the Degasperis-
Procesi equation are much weaker than those of the Camassa-Holm equation.
In particular, one can see that the conservation law E2(u) for the DP equation
is equivalent to ‖u‖2L2 . In fact, by the Fourier transform, we have

E2(u) =
∫

R
yvdx =

∫

R

1 + ξ2

4 + ξ2
|û(ξ)|2dξ ∼ ‖û‖2L2 = ‖u‖2L2 . (1.8)

Therefore, the stability issue of the peaked solitons of the DP equation is more
subtle .

For the DP equation, we can only expect to obtain the orbital stability of
peakons in the sense of L2−norm due to a weaker conservation law E2. The
solutions of the DP equation usually tend to be oscillations which spread out
spatially in a quite complicated way. In general, a small perturbation of a
solitary wave can yield another one with a different speed and phase shift. We
define the orbit of traveling-wave solutions cϕ to be the set U(ϕ) = {cϕ(· +
x0), x0 ∈ R}, and a peaked soliton of the DP equation is called orbitally stable
if a wave starting close to the peakon remains close to some translate of it at
all later times.
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Let us denote
E2(u) = ‖u‖2X .

The following stability theorem is the principal result of the present paper.

Theorem 1 (Stability) Let cϕ be the peaked soliton defined in (1.4) traveling
with speed c > 0. Then cϕ is orbitally stable in the following sense. If u0 ∈ Hs

for some s > 3/2, y0 = u0−∂2
xu0 is a nonnegative Radon measure of finite total

mass, and

‖u0 − cϕ‖X < cε, |E3(u0)− E3(cϕ)| < c3ε, 0 < ε <
1
2
,

then the corresponding solution u(t) of equation (1.5) with initial value u(0) = u0

satisfies
sup
t≥0

‖u(t, ·)− cϕ(· − ξ1(t))‖X < 3c ε1/4,

where ξ1(t) ∈ R is the maximum point of the function v(t, ·) = (4− ∂2
x)−1u(t, ·).

Moreover, let

M1 (t) = v(t, ξ1(t)) ≥ M2 (t) · · · ≥ Mn (t) ≥ 0 and m1 (t) ≥ · · · ≥ mn−1 (t) ≥ 0

be all local maxima and minima of the nonnegative function v(t, ·), respectively.
Then ∣∣∣M1 (t)− c

6

∣∣∣ ≤ c
√

2ε (1.9)

and
n∑

i=2

(
M2

i (t)−m2
i−1 (t)

)
< 2c2

√
ε. (1.10)

Remark 1 For an initial profile u0 ∈ Hs, s > 3/2, there exists a local solution
u ∈ C([0, T ),Hs) of (1.5) with initial data u(0) = u0 [29]. Under the assumption
y0 = u0 − ∂2

xu0 ≥ 0 in Theorem 1, the existence is global in time [23], that is
T = +∞. For peakons cϕ with c > 0, we have

(
1− ∂2

x

)
(cϕ) = 2cδ (here δ is

the Dirac distribution). Hence the assumption on y0 that it is a nonnegative
measure is quite natural for a small perturbation of the peakons. Existence of
global weak solution in H1 of the DP equation is also proved in [15]. Note that
peakons cϕ are not strong solutions, since ϕ ∈ Hs, only for s < 3/2.

The above theorem of orbital stability states that any solution starting close
to peakons cϕ remains close to some translate of cϕ in the norm ‖ ‖X , at
any later time. More information about this stability is contained in (1.9) and
(1.10). Notice that for peakons cϕ, the function vcϕ is single-humped with the
height 1

6c. So (1.9) and (1.10) imply that the graph of v(t, ·) is close to that of
the peakon cϕ with a fixed c > 0 for all times.

There are two standard methods to study stability issues of dispersive wave
equations. One is the variational approach which constructs the solitary waves
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as energy minimizers under appropriate constraints, and the stability automat-
ically follows. However, without uniqueness of the minimizer, one can only
obtain the stability of the set of minima. The variational approach is used in
[10] for the CH equation. It is shown in [10] that the each peakon cϕ is the
unique minimum (ground state) of constrained energy, from which its orbital
stability is proved for initial data u0 ∈ H3 with y0 = (1 − ∂2

x)u0 ≥ 0. Their
proof strongly relies on the fact that the conserved energy F2 in (1.7) of the CH
equation is the H1−norm of the solution. However, for the DP equation the
energy E2 in (1.8) is only the L2 norm of the solution. Consequently, it is more
difficult to use such a variational approach for the DP equation.

Another approach to study stability is to linearize the equation around the
solitary waves, and it is commonly believed that nonlinear stability is governed
by the linearized equation. However, for the CH and DP equations, the non-
linearity plays the dominant role rather than being a higher-order correction to
linear terms. Thus it is unclear how one can get nonlinear stability of peakons
by studying the linearized problem. Morover, the peaked solitons cϕ are not
differentiable, which makes it difficult to analyze the spectrum of the linearized
operator around cϕ.

To establish the stability result for the DP equation, we extend the approach
in [11] for the CH equation. The idea in [11] is to directly use the energy F2 as
the Liapunov functional. By expanding F2 in (1.7) around the peakon cϕ, the
error term is in the form of the difference of the maxima of cϕ and the perturbed
solution u. To estimate this difference, they establish two integral relations

∫
g2 = F2 (u)− 2 (max u)2 and

∫
ug2 = F3 (u)− 4

3
(max u)3

with a function g. Relating these two integrals, one can get

F3(u) ≤ MF2(u)− 2
3
M3, M = max u(x)

and the error estimate |M −maxϕ| then follows from the structure of the above
polynomial inequality.

To extend the above approach to nonlinear stability of the DP peakons, we
have to overcome several difficulties. By expanding the energy E2 (u) around
the peakon cϕ, the error term turns out to be max vcϕ − max vu, with vu =
(4−∂2

x)−1u. We can derive the following two integral relations for M1 = max vu,
E2 (u) and E3(u) by

∫
g2 = E2 (u)− 12M2

1 and
∫

hg2 = E3 (u)− 144M3
1

with some functions g and h related to vu. To get the required polynomial
inequality from the above two identities, we need to show h ≤ 18max vu. How-
ever, since h is of the form −∂2

xvu ± 6∂xvu + 16vu, generally it can not be
bounded by vu. This new difficulty is due to the more complicated nonlinear
structure and weaker conservation laws of the DP equation. To overcome it, we
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introduce a new idea. By constructing g and h piec ewise according to mono-
tonicity of the function vu, we then establish two new integral identities (3.7)
and (3.9) for E2, E3 and all local maxima and minima of vu. The crucial es-
timate h ≤ 18max vu can now be shown by using this monotonicity structure
and properties of the DP solutions. This results in inequality (3.13) related to
E2, E3 and all local maxima and minima of vu. By analyzing the structure of
equality (3.13), we can obtain not only the error estimate |M1 −max vcϕ| but
more precise stability information from (1.10). We note that the same approach
can also be used for the CH equation to gain more stability information (see
Remark 2).

Although the DP equation is similar to the CH equation in several aspects,
we would like to point out that these two equations are truly different. One of
the novel features of the DP equation is it has not only peaked solitons [12],
u(t, x) = ce−|x−ct|, c > 0 but also shock peakons [4, 24] of the form

u(t, x) = − 1
t + k

sgn(x)e−|x|, k > 0. (1.11)

It is noted that the above shock-peakon solutions [24] can be observed by sub-
stituting (x, t) 7−→ (εx, εt) to equation (1.5) and letting ε → 0 so that it yields
the “derivative Burgers equation” (ut + uux)xx = 0, from which shock waves
form. The periodic shock waves were established by Escher, Liu and Yin [16].

The shock peakons can be also observed from the collision of the peakons
(moving to the right) and antipeakons (moving to left) [24].

For example, if we choose the initial data

u0(x) = c1e
−|x−x1| − c1e

−|x−x2|,

with c1 > 0, and x1 + x2 = 0, x2 > 0, then the collision occurs at x = 0 and the
solution

u(x, t) = p1(t)e−|x−q1(t)| + p2(t)e−|x−q2(t)|,

(x, t) ∈ R+×R, only satisfies the DP equation for t < T. The unique continuation
of u(x, t) into an entropy weak solution is then given by the stationary decaying
shock peakon

u(x, t) =
−sgn(x)e−|x|

k + (t− T )
for t ≥ T.

On the other hand, the isospectral problem in the Lax pair for equation (1.5)
is the third-order equation

ψx − ψxxx − λyψ = 0

cf. [12], while the isospectral problem for the Camassa-Holm equation is the
second order equation

ψxx − 1
4
ψ − λyψ = 0

(in both cases y = u− uxx) cf. [2]. Another indication of the fact that there is
no simple transformation of equation (1.5) into the Camassa-Holm equation is
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the entirely different form of conservation laws for these two equations [2, 12].
Furthermore, the Camassa-Holm equation is a re-expression of geodesic flow on
the diffeomorphism group [9] or on the Bott-Virasoro group [27], while no such
geometric derivation of the Degasperis-Procesi equation is available.

The remainder of the paper is organized as follows. In Section 2, we recall
the local well-posedness of the Cauchy problem of equation (1.5), the precise
blow-up scenario of strong solutions, and several useful results which are crucial
in the proof of stability theorem for equation (1.5) from [29, 30]. Section 3 is
devoted to the proof of the stability result (Theorem 1).

Notation. As above and henceforth, we denote by ∗ convolution with respect to
the spatial variable x ∈ R. We use ‖ · ‖Lp to denote the norm in the Lebesgue
space Lp(R) (1 ≤ p ≤ ∞), and ‖ · ‖Hs , s ≥ 0 for the norm in the Sobolev spaces
Hs(R).

2 Preliminaries

In the present section, we discuss the issue of well-posedness. The local exis-
tence theory of the initial-value problem is necessary for our study of nonlinear
stability. We briefly collect the needed results from [23, 29, 30].

Denote p(x) := 1
2e−|x|, x ∈ R, then (1 − ∂2

x)−1f = p ∗ f for all f ∈ L2(R)
and p ∗ (u−uxx) = u. Using this identity, we can rewrite the DP equation (1.5)
as follows:

ut + uux + ∂xp ∗
(

3
2
u2

)
= 0, t > 0, x ∈ R. (2.1)

The local well-posedness of the Cauchy problem of equation (1.5) with initial
data u0 ∈ Hs(R), s > 3

2 can be obtained by applying Kato’s theorem [22, 29].
As a result, we have the following well-posedness result.

Lemma 2.1 [29] Given u0 ∈ Hs(R), s > 3
2 , there exist a maximal T =

T (u0) > 0 and a unique solution u to equation (1.5) (or equation (2.1)), such
that

u = u(·, u0) ∈ C([0, T ); Hs(R)) ∩ C1([0, T ); Hs−1(R)).

Moreover, the solution depends continuously on the initial data, i.e. the mapping
u0 7→ u(·, u0) : Hs(R) → C([0, T ); Hs(R)) ∩ C1([0, T ); Hs−1(R)) is continuous
and the maximal time of existence T > 0 can be chosen to be independent of s.

The following two lemmas show that the only way that a classical solution
to (1.5) may fail to exist for all time is that the wave may break.

Lemma 2.2 [29] Given u0 ∈ Hs(R), s > 3
2 , blow up of the solution u = u(·, u0)

in finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈R

[ux(t, x)]} = −∞.
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Lemma 2.3 [23] Assume u0 ∈ Hs(R), s > 3
2 . Let T be the maximal existence

time of the solution u to equation (1.5). Then we have

‖u(t, x)‖L∞ ≤ 3‖u0(x)‖2L2t + ‖u0(x)‖L∞ , ∀t ∈ [0, T ].

Now consider the following differential equation
{

qt = u(t, q), t ∈ [0, T ),
q(0, x) = x, x ∈ R.

(2.2)

Applying classical results in the theory of ordinary differential equations,
one can obtain the following two results on q which are crucial in the proof of
global existence and blow-up solutions.

Lemma 2.4 [30] Let u0 ∈ Hs(R), s ≥ 3, and let T > 0 be the maximal exis-
tence time of the corresponding solution u to equation(1.5). Then the equation
(2.2) has a unique solution q ∈ C1([0, T ) × R,R). Moreover, the map q(t, ·) is
an increasing diffeomorphism of R with

qx(t, x) = exp
(∫ t

0

ux(s, q(s, x))ds

)
> 0, ∀(t, x) ∈ [0, T )× R.

Lemma 2.5 [30] Let u0 ∈ Hs(R), s ≥ 3, and let T > 0 be the maximal
existence time of the corresponding solution u to equation (2.2). Setting y :=
u− uxx, we have

y(t, q(t, x))q3
x(t, x) = y0(x), ∀(t, x) ∈ [0, T )× R.

The next two lemmas clearly show that the solution of equation (1.5) is
affected by the shape of the initial profiles, not the smoothness and size of the
initial profiles.

Lemma 2.6 [23] Let u0 ∈ Hs(R), s > 3
2 . Assume there exists x0 ∈ R such that

{
y0(x) = u0(x)− u0,xx(x) ≥ 0 if x ≤ x0,
y0(x) = u0(x)− u0,xx(x) ≤ 0 if x ≥ x0,

and y0 changes sign. Then, the corresponding solution to equation(1.5) blows
up in a finite time.

Lemma 2.7 [23] Assume u0 ∈ Hs(R), s > 3
2 and there exists x0 ∈ R such that

{
y0(x) ≤ 0 if x ≤ x0,
y0(x) ≥ 0 if x ≥ x0.

Then equation (1.5) has a unique global strong solution

u = u(., u0) ∈ C([0,∞); Hs(R)) ∩ C1([0,∞); Hs−1(R)).

Moreover, E2(u) =
∫
R yv dx is a conservation law, where y = (1 − ∂2

x)u and
v = (4− ∂2

x)−1u, and for all t ∈ R+ we have
(i) ux(t, ·) ≥ −|u(t, ·)| on R,
(ii) ‖u‖21 ≤ 6‖u0‖4L2t2 + 4‖u0‖2L2‖u0‖L∞t + ‖u0‖21.
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The following lemma is a special case of Lemma 2.7.

Lemma 2.8 [23] Assume u0 ∈ Hs(R), s > 3
2 . If y0 = u0 − u0,xx ≥ 0 (≤ 0) on

R, then equation (1.5) has a unique global strong solution u such that u(t, x) ≥
0 (≤ 0) and y(t, x) = u− ∂2

xu ≥ 0 (≤ 0) for all (t, x) ∈ R+ × R.

Lemma 2.9 Assume u0 ∈ Hs, s > 3/2 and y0 ≥ 0. If k1 ≥ 1, then the
corresponding solution u of (1.5) with the initial data u(0) = u0 satisfies

(k1 ± ∂x)u(t, x) ≥ 0, ∀(t, x) ∈ R+ × R.

Proof. By Lemma 2.4 and a simple density argument, it suffices to show the
lemma for s = 3. In view of Lemma 2.5, the potential y(t, x) = (1 − ∂2

x)u ≥
0, ∀(t, x) ∈ R+ × R. Note u = (1− ∂2

x)−1y. Then we have

u(t, x) =
e−x

2

∫ x

−∞
eηy(t, η)dη +

ex

2

∫ ∞

x

e−ηy(t, η)dη (2.3)

and

ux(t, x) = −e−x

2

∫ x

−∞
eηy(t, η)dη +

ex

2

∫ ∞

x

e−ηy(t, η)dη. (2.4)

It then follows from the above two relations (2.3) and (2.4) that

(k1 ± ∂x)u =
1
2
(k1 ∓ 1)e−x

∫ x

−∞
eηydη +

1
2
(k1 ± 1)ex

∫ ∞

x

e−ηydη ≥ 0. (2.5)

¤
Lemma 2.10 Let w(t, x) = (k1 ± ∂x)u(t, x). Assume u0 ∈ Hs, s > 3/2 and
y0 ≥ 0. If k1 ≥ 1 and k2 ≥ 2, then we have

(k2 ± ∂x)(4− ∂2
x)−1w ≥ 0.

Proof. In view of Lemma 2.9, we have w(t, x) ≥ 0, ∀(t, x) ∈ R+ × R. A simple
calculation shows

(4− ∂2
x)−1w =

1
4

∫ ∞

−∞
e−2|x−ξ|w(t, ξ)dξ

=
1
4

e−2x

∫ x

−∞
e2ξw(t, ξ)dξ +

1
4

e2x

∫ ∞

x

e−2ξw(t, ξ)dξ

and

∂x

(
(4− ∂2

x)−1w
)

= −1
2

e−2x

∫ x

−∞
e2ξw(t, ξ)dξ +

1
2

e2x

∫ ∞

x

e−2ξw(t, ξ)dξ.

Combining above two identities, we get

(k2 ± ∂x)(4− ∂2
x)−1w =

1
4

(k2 ∓ 2)e−2x

∫ x

−∞
e2ξw(t, ξ)dξ

+
1
4

(k2 ± 2)e2x

∫ ∞

x

e−2ξw(t, ξ)dξ ≥ 0.

¤
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3 Proof of stability

In this primary section of the paper, we prove the stability theorem (Theorem
1) stated in the introduction. Note that the assumptions on the initial profiles
guarantee the existence of an unique global solution of equation (1.5). The
stability theorem provides a quantitative estimate of how closely the wave must
approximate the peakon initially in order to be close enough to some translate of
the peakon at any later time. That translate must be located at a point where
the wave is tallest. The proof of Theorem 1 is based on a series of lemmas
including some in the previous section.

We take the wave speed c = 1 and the case of general c follows by scaling
the estimates.

Note that ϕ(x) = e−|x| ∈ H1(R) has the peak at x = 0 and

E3(ϕ) =
∫ ∞

−∞
e−3|x|dx =

2
3
. (3.1)

Define vu = (4− ∂2
x)−1u = 1

4e−2|x| ∗ u. Then

vϕ(x) =
1
4

∫

R
e−2|η−x|e−|η|dη =

1
3
e−|x| − 1

6
e−2|x|, ∀x ∈ R, (3.2)

and thus
max
x∈R

vϕ = vϕ(0) =
1
6
. (3.3)

Note ϕ − ∂2
xϕ = 2δ. Here, δ denotes the Dirac distribution. For simplicity,

we abuse notation by writing integrals instead of the H−1/H1 duality pairing.
Hence we have

E2(ϕ) = ‖ϕ‖2X =
∫

R
(1− ∂2

x)ϕ (4− ∂2
x)−1ϕ dx

= 2
∫

R
δ(x)(4− ∂2

x)−1ϕ(x) dx = 2vϕ(0) =
1
3
.

(3.4)

Lemma 3.1 For any u ∈ L2(R) and ξ ∈ R, we have

E2(u)− E2(ϕ) = ‖u− ϕ(· − ξ)‖2X + 4 (vu(ξ)− vϕ(0)) ,

where vu = (4− ∂2
x)−1u.

Proof. This can be done by a simple calculation. To see this, we have

‖u− ϕ(· − ξ)‖2X = ‖u‖2X + ‖ϕ‖2X − 2
∫

R
(1− ∂2

x)ϕ(x− ξ)(4− ∂2
x)−1u(x)dx

= ‖u‖2X + ‖ϕ‖2X − 4
∫

R
δ(x− ξ)(4− ∂2

x)−1u(x)dx

= ‖u‖2X + ‖ϕ‖2X − 4vu(ξ) = ‖u‖2X − ‖ϕ‖2X + 2‖ϕ‖2X − 4vu(ξ)
= E2(u)− E2(ϕ) + 4 (vϕ(0)− vu(ξ)) .
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where use has been made of integration by parts and the fact that E2(ϕ) =
‖ϕ‖2X = 2vϕ(0). This completes the proof of the lemma. ¤

In the next two lemmas, we establish two formulas related the critical values
of vu to the two invariants E2(u) and E3(u). Consider a function 0 6= u ∈
Hs, s > 3/2 and u ≥ 0. Then 0 < vu =

(
4− ∂2

x

)−1
u ∈ Hs+2 ⊂ C2. Since

vu is positive and decays at infinity, it must have n points {ξi}n
i=1 with local

maximal values and n − 1 points {ηi}n−1
i=1 with local minimal values for some

integer n ≥ 1. We arrange these critical points in their order by

−∞ < ξ1 < η1 < ξ2 < η2 < ... < ξi−1 < ηi−1 < ξi < ηi < ... < ηn−1 < ξn < +∞.

Let

vu(ξi) = Mi, 1 ≤ i ≤ n and vu(ηi) = mi, 1 ≤ i ≤ n− 1. (3.5)

Here, we assume n < +∞, that is, there are a finite number of minima and
maxima of vu. In the case when there are infinitely many maxima and minima,
the proofs below can be modified simply by changing the finite sums to infinite
sums.

Lemma 3.2 Let 0 6= u ∈ Hs, s > 3/2 and u ≥ 0. By the above notations,
define the function g by

g(x) =
{

2vu + ∂2
xvu − 3∂xvu, ηi−1 < x < ξi,

2vu + ∂2
xvu + 3∂xvu, ξi < x < ηi,

1 ≤ i ≤ n. (3.6)

with η0 = −∞ and ηn = +∞.Then we have

∫

R
g2(x)dx = E2(u)− 12

(
n∑

i=1

M2
i −

n−1∑

i=1

m2
i

)
. (3.7)

Proof. To simplify notations, we use v for vu below. Then u = 4v − ∂2
xv. First,

we note that

E2(u) =
∫

R

[
(1− ∂2

x)u
]
vdx =

∫

R
(uv + ∂xu∂xv) dx

=
∫ {(

4v − ∂2
xv

)
v +

[(
4− ∂2

x

)
∂xv

]
∂xv

}
dx

=
∫ [

4v2 + 5 (∂xv)2 +
(
∂2

xv
)2

]
dx.

To show (3.7), we evaluate the integral of g2 on each interval [ηi−1, ηi], 1 ≤ i ≤ n.
We have

∫ ηi

ηi−1

g2(x)dx =
∫ ξi

ηi−1

(2v + ∂xxv − 3∂xv)2 dx +
∫ ηi

ξi

(2v + ∂xxv + 3∂xv)2 dx

= I + II.

11



To estimate the first term, by integration by parts, we have

I =
∫ ξi

ηi−1

(
4v2 + (∂xxv)2 + 9 (∂xv)2 + 4v∂xxv − 12v∂xv − 6∂xxv∂xv

)
dx

=
∫ ξi

ηi−1

(
4v2 + (∂xxv)2 + 5 (∂xv)2

)
dx− 6

(
v (ξi)

2 − v (ηi−1)
2
)

,

where use has been made of the fact that ∂xv (ξi) = ∂xv (ηi−1) = 0. Similarly,

II =
∫ ηi

ξi

(
4v2 +

(
∂2

xv
)2

+ 5 (∂xv)2
)

dx + 6
(
v (ηi)

2 − v (ξi)
2
)

.

So∫ ηi

ηi−1

g2(x)dx =
∫ ηi

ηi−1

(
4v2 +

(
∂2

xv
)2

+ 5 (∂xv)2
)

dx−12v (ξi)
2+6v (ηi−1)

2+6v (ηi)
2

and
∫

R
g2(x)dx =

∫

R

(
4v2 +

(
∂2

xv
)2

+ 5 (∂xv)2
)

dx−
n∑

i=1

(
12v (ξi)

2 − 6v (ηi−1)
2 − 6v (ηi)

2
)

= E2 (u)− 12

(
n∑

i=1

M2
i −

n−1∑

i=1

m2
i

)
,

where use has been made of the fact that v (η0) = v (ηn) = 0 and the notations
in (3.5). ¤
Lemma 3.3 With the same assumptions and notations in Lemma 3.2. Define
the function h by

h(x) =
{ −∂2

xvu − 6∂xvu + 16vu, ηi−1 < x < ξi,
−∂2

xvu + 6∂xvu + 16vu, ξi < x < ηi,
1 ≤ i ≤ n. (3.8)

with η0 = −∞ and ηn = +∞. Then we have
∫

R
h(x)g2(x)dx = E3(u)− 144

(
n∑

i=1

M3
i −

n−1∑

i=1

m3
i

)
. (3.9)

Proof. We still use v for vu. First, note that

E3(u) =
∫

R
(4v − ∂xxv)3 dx =

∫

R

[
− (∂xxv)3 + 12 (∂xxv)2 v − 48v2∂xxv + 64v3

]
dx.

To show (3.9), we evaluate the integral of h(x)g2(x) on each interval [ηi−1, ηi],
1 ≤ i ≤ n. We have

∫ ηi

ηi−1

h (x) g2(x)dx =
∫ ξi

ηi−1

(−∂xxv − 6∂xv + 16v) (2v + ∂xxv − 3∂xv)2 dx

+
∫ ηi

ξi

(−∂xxv + 6∂xv + 16v) (2v + ∂xxv + 3∂xv)2 dx

= I + II.
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It is found that the first term

I =
∫ ξi

ηi−1

{− (∂xxv)3 + 12 (∂xxv)2 v + 27∂xxv (∂xv)2 − 108v∂xxv∂xv + 60v2∂xxv

− 54 (∂xv)3 + 216 (∂xv)2 v − 216v2∂xv + 64v3}dx

=
∫ ξi

ηi−1

{− (∂xxv)3 + 12 (∂xxv)2 v + 54 (∂xv)3 + 60v2∂xxv − 54 (∂xv)3

− 108v2∂xxv + 64v3}dx− 72
(
v (ξi)

3 − v (ηi−1)
3
)

=
∫ ξi

ηi−1

[
− (∂xxv)3 + 12 (∂xxv)2 v − 48v2∂xxv + 64v3

]
dx− 72

(
v (ξi)

3 − v (ηi−1)
3
)

,

where use has been made of the following integral identities due to integration
by parts and ∂xv (ξi) = ∂xv (ηi−1) = 0,

∫ ξi

ηi−1

∂xxv (∂xv)2 dx =
1
3

∫ ξi

ηi−1

∂x

(
(∂xv)3

)
dx = 0

∫ ξi

ηi−1

v∂xxv∂xv dx =
∫ ξi

ηi−1

v∂x

(
1
2

(∂xv)2
)

dx = −1
2

∫ ξi

ηi−1

(∂xv)3 dx,

∫ ξi

ηi−1

(∂xv)2 v dx =
∫ ξi

ηi−1

∂xv∂x

(
1
2
v2

)
dx = −1

2

∫ ξi

ηi−1

v2∂xxvdx,

∫ ξi

ηi−1

v2∂xvdx =
∫ ξi

ηi−1

1
3
∂x

(
v3

)
dx =

1
3

(
v (ξi)

3 − v (ηi−1)
3
)

.

Similarly,

II =
∫ ηi

ξi

[
− (∂xxv)3 + 12 (∂xxv)2 v − 48v2∂xxv + 64v3

]
dx+72

(
v (ηi)

3 − v (ξi)
3
)

and thus
∫ ηi

ηi−1

h (x) g2(x)dx =
∫ ηi

ηi−1

[
− (∂xxv)3 + 12 (∂xxv)2 v − 48v2∂xxv + 64v3

]
dx

− 144v (ξi)
3 + 72

(
v (ηi−1)

3 + v (ηi)
3
)

.

By adding up the above integral from 1 to n, we get
∫

R
h(x)g2(x)dx =

∫

R

[
− (∂xxv)3 + 12 (∂xxv)2 v − 48v2∂xxv + 64v3

]
dx

− 144
n∑

i=1

v (ξi)
3 + 72

n∑

i=1

(
v (ηi−1)

3 + v (ηi)
3
)

= E3(u)− 144

(
n∑

i=1

M3
i −

n−1∑

i=1

m3
i

)
.
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¤
Without changing the integral identities (3.7) and (3.9), we can rearrange

Mi and mi in the order:

M1 ≥ M2 · · · ≥ Mn ≥ 0, m1 ≥ · · · ≥ mn−1 ≥ 0.

Moreover, since each local minimum is less than the neighboring local maximum,
we have Mi ≥ mi−1 (2 ≤ i ≤ n). The following two elementary inequalities are
needed in the later proofs.

Lemma 3.4 For any n ≥ 2, assume {Mi}n
i=1 and {mi}n−1

i=1 are 2n− 1 numbers
satisfy

M1 ≥ M2 · · · ≥ Mn ≥ 0, m1 ≥ · · · ≥ mn−1 ≥ 0

and Mi ≥ mi−1 (2 ≤ i ≤ n). Then
(i)

n∑

i=2

(
M3

i −m3
i−1

) ≤ 3
2
M1

n∑

i=2

(
M2

i −m2
i−1

)
. (3.10)

(ii)

(
M2

1 +
n∑
2

(
M2

i −m2
i−1

)
) 1

2

≥
(

M3
1 +

n∑
2

(
M3

i −m3
i−1

)
) 1

3

. (3.11)

Proof. (i) For any 2 ≤ i ≤ n, we have

(
M3

i −m3
i−1

)− 3
2
M1

(
M2

i −m2
i−1

)

= −1
2

(Mi −mi−1)
(
3M1mi−1 + 3M1Mi − 2Mimi−1 − 2M2

i − 2m2
i−1

) ≤ 0

since M1 ≥ Mi ≥ mi−1. This implies that desired result in (3.10).
(ii) Denote

An =

(
M2

1 +
n∑
2

(
M2

i −m2
i−1

)
) 1

2

and Bn =

(
M3

1 +
n∑
2

(
M3

i −m3
i−1

)
) 1

3

.

(3.12)
We want to show An ≥ Bn (n ≥ 2) by induction. For the case of n = 2, it is
equivalent to show that

(
M2

1 + M2
2 −m2

1

)3 − (
M3

1 + M3
2 −m3

1

)2 ≥ 0

14



if M1 ≥ M2 ≥ m1 ≥ 0. We have
(
M2

1 + M2
2 −m2

1

)3 − (
M3

1 + M3
2 −m3

1

)2

= 3M4
1 M2

2 − 3M4
1 m2

1 − 2M3
1 M3

2 + 2M3
1 m3

1 + 3M2
1 M4

2

− 6M2
1 M2

2 m2
1 + 3M2

1 m4
1 − 3M4

2 m2
1 + 2M3

2 m3
1 + 3M2

2 m4
1 − 2m6

1

= (M2 −m1) (M1 −m1) {3M1M
3
2 + 3M3

1 M2 − 2M1m
3
1 + 3M3

1 m1

− 2M2m
3
1 + 3M3

2 m1 − 2m4
1 − 2M2

1 M2
2 + M2

1 m2
1 + M2

2 m2
1

− 2M1M2m
2
1 + M1M

2
2 m1 + M2

1 M2m1},

which is obviously nonnegative by the assumption M1 ≥ M2 ≥ m1 ≥ 0. Assume
the inequality An ≥ Bn is true for n ≤ k (k ≥ 2). Our goal is to deduce
Ak+1 ≥ Bk+1. Since Ak ≥ M1 ≥ Mk+1 ≥ mk, we have

A6
k+1 =

[
M2

1 +
k+1∑
2

(
M2

i −m2
i−1

)
]3

=
(
A2

k + M2
k+1 −m2

k

)3 ≥ (
A3

k + M3
k+1 −m3

k

)2
(by the n = 2 inequality)

≥ (
B3

k + M3
k+1 −m3

k

)2
(since Ak ≥ Bk by the induction assumption)

= B6
k+1.

Thus Ak+1 ≥ Bk+1 and An ≥ Bn is true for any n ≥ 2. ¤
The following lemma is crucial in the proof of stability of the peakons.

Lemma 3.5 Assume u0 ∈ Hs, s > 3/2 and y0 ≥ 0. Let M1 = vu(t, ξ1) =
maxx∈R{v(t, x)} Then for t ≥ 0,

E3(u)− 144B3
n ≤ 18M1

(
E2(u)− 12A2

n

)
(3.13)

where u is the global solution of equation (1.5) with initial value u0, vu = (4−
∂2

x)−1u, and An and Bn are defined in (3.12).

Proof. First, by Lemma 2.8 the global solution u of equation (1.5) satisfies
u(t, x) ≥ 0 and y(t, x) = u− ∂2

xu ≥ 0 for all (t, x) ∈ R+×R. We now claim that
h ≤ 18v for (t, x) ∈ R+ × R. To see this, we rewrite the expression of h as

h(x) =
{ − (

∂2
x + 3∂x + 12

)
v − 3∂xv + 18v, ηi−1 < x < ξi,

− (
∂2

x − 3∂x + 2
)
v + 3∂xv + 18v, ξi < x < ηi,

1 ≤ i ≤ n.

If ηi−1 < x < ξi, 1 ≤ i ≤ n, then vx > 0. On the other hand, it follows from
Lemma 2.10 that

− (
∂2

x + 3∂x + 2
)
v = −(2 + ∂x)(4− ∂2

x)−1(1 + ∂x)u ≤ 0.

Hence
− (

∂2
x + 3∂x + 2

)
v − 3∂xv + 18v ≤ 18v. (3.14)
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A similar argument also shows that for ξi < x < ηi, 1 ≤ i ≤ n, ∂xv < 0 and

− (
∂2

x − 3∂x + 2
)
v + 3∂xv + 18v (3.15)

= −(2− ∂x)(4− ∂2
x)−1(1− ∂x)u + 3∂xv + 18v ≤ 18v.

The combination of (3.14) and (3.15) yields

h ≤ 18v ≤ 18max v = 18M1, ∀ (t, x) ∈ R+ × R.

By the notation in (3.12), the integral identities (3.7) and (3.9) become
∫

R
g2(x)dx = E2(u)− 12A2

n

and ∫

R
h(x)g2(x)dx = E3(u)− 144B3

n.

Note that when n = 1, A1 = B1 = M1. Relating the above integrals, we get

E3(u)− 144B3
n ≤ 18M1(E2(u)− 12A2

n).

¤

Lemma 3.6 Assume u ∈ Hs, s > 3/2 and y ≥ 0. Let

M1 = vu(t, ξ1) = max
x∈R

{v(t, x)}

and

An = M2
1 +

n∑

i=2

(
M2

i −m2
i−1

)

where Mi and mi−1 (2 ≤ i ≤ n) are local maxima and minima of vu. If |E2(u)−
E2(ϕ)| ≤ δ and |E3(u)− E3(ϕ)| ≤ δ with 0 < δ < 1, then

(i) ∣∣∣∣M1 − 1
6

∣∣∣∣ <
√

δ, (3.16)

recalling that vϕ(0) = 1
6 = max vϕ,

(ii) ∣∣∣∣An − 1
6

∣∣∣∣ <
√

δ, (3.17)

and
(iii)

n∑

i=2

(
M2

i −m2
i−1

)
<

4
3

√
δ. (3.18)
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Proof. To obtain (i), we first claim that

M3
1 −

1
4
E2(u)M1 +

1
72

E3(u) ≤ 0. (3.19)

In the case when M1 is the only local maximum of vu, we have n = 1, A1 =
B1 = M1 and (3.19) follows directly from (3.13). When n ≥ 2, in view of (3.13)
and inequality (3.10) in Lemma 3.4 (i), there appears the relation

M3
1 −

1
4
E2(u)M1 +

1
72

E3(u)

≤ 144

(
n∑

i=2

(
M3

i −m3
i−1

)− 3
2
M1

n∑

i=2

(
M2

i −m2
i−1

)
)
≤ 0.

Define the cubic polynomial P by

P (y) = y3 − 1
4
E2(u)y +

1
72

E3(u). (3.20)

For the peakon solution, E2(ϕ) = 1
3 and E3(ϕ) = 2

3 , the above polynomial
becomes

P0(y) = y3 − 1
12

y +
1

108
=

(
y − 1

6

)2 (
y +

1
3

)
. (3.21)

Since

P0(M1) = P (M1) +
1
4

(E2(u)− E2(ϕ)) M1 − 1
72

(E3(u)− E3(ϕ)) ,

and P (M1) ≤ 0 by (3.19) , it follows that
(

M1 − 1
6

)2

≤ 3
4

(E2(u)− E2(ϕ)) M1 − 1
24

(E3(u)− E3(ϕ)) . (3.22)

On the other hand, observing E2(u)− 12A2
n ≥ 0, we have

0 < M1 ≤ An ≤
√

E2(u)/12 ≤
√

(1/3 + δ) /12 <
1
3

(3.23)

when δ < 1. It is then inferred from (3.22) that
∣∣∣∣M1 − 1

6

∣∣∣∣ ≤
√

1
4
|E2(u)− E2(ϕ)|+ 1

24
|E3(u)− E3(ϕ)| <

√
δ.

We now prove claim (ii). When n = 1, A1 = M1 and it is reduced to (i).
When n ≥ 2, it is thereby inferred from (3.13) that

A3
n −

1
4
E2(u)An +

1
72

E3(u) ≤ 0, (3.24)

due to 0 ≤ M1 ≤ An and 0 ≤ Bn ≤ An by Lemma 3.4 (ii). In consequence,
(3.17) follows from the same argument as in part (i).
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(iii) can be obtained from (i) and (ii). In fact, combining (i) and (ii), we
have

2
√

δ ≥ An −M1 =
∑n

2

(
M2

i −m2
i−1

)

An + M1
,

which implies (3.18) by using (3.23). ¤
Proof of Theorem 1. Let u ∈ C([0,∞),Hs), s > 3/2 be the solution of (1.5)
with initial data u(0) = u0. Since E2 and E3 are both conserved by the evolution
equation (1.5), we have

E2(u(t, ·)) = E2(u0) and E3(u(t, ·) = E3(u0), ∀t ≥ 0. (3.25)

Since ‖u0 − ϕ‖X < ε, we obtain

|E2(u0)− E2(ϕ)| = |(‖u0‖X − ‖ϕ‖X)(‖u0‖X + ‖ϕ‖X)|

≤ ε (2‖ϕ‖X + ε) = ε

(
2√
3

+ ε

)
< 2ε,

under the assumption ε < 1
2 . In view of (3.25), the assumptions of Lemma 3.6

are satisfied for u(t, ·) and δ = 2ε. It is then inferred that
∣∣∣∣vu(t, ξ1(t))− 1

6

∣∣∣∣ ≤
√

2ε, ∀t ≥ 0. (3.26)

By (3.25) and Lemma 3.1, we have

‖u(t, ·)− ϕ(· − ξ1(t))‖2X = E2(u0)− E2(ϕ) + 4(vϕ(0)− vu(t, ξ1(t))), ∀t ≥ 0.

Combining the above estimates yields

‖u(t, ·)− ϕ(· − ξ1(t))‖X ≤
√

2ε + 4
√

2ε < 3ε1/4. ∀t ≥ 0.

Estimates (1.9) and (1.10) then follow directly from Lemma 3.6 (ii) and (iii).
This completes the proof of Theorem 1. ¤

Remark 2 We make several comments.
(1) By (3.23), M1 = max vu ≤

√
E2 (u) /12. For peakons cϕ, we have

max vcϕ =
√

E2 (cϕ) /12 = 1
6c. So among all waves of a fixed energy E2, the

peakon is tallest in terms of vu.
(2) In our proof, we use inequality (3.22) to get estimates (3.16) and (3.18)

more directly, compared with the argument in [11] by analyzing the root struc-
ture of the polynomial P (y). Moreover, it implies that the peakons are energy
minimizers with a fixed invariant E3, which explains their stability. Indeed, if
E3 (u) = E3 (ϕ), it follows from (3.22) that E2(u) ≥ E2(ϕ). The same re-
mark also applies to the CH equation and shows that the CH-peakons are energy
minima with fixed F3.

(3) Compared with [11], our construction of the integral relations (3.7) and
(3.9) is more delicate. It not only is required in our current case, but also
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provides us more information about stability via (1.10). For the CH equation,
even if the orbital stability is proved by a simpler construction [11], our approach
can also give the additional stability information. More specifically, for the CH
equation (1.3) with y0 ≥ 0, by refining the integrals of [11, Lemma 2] to each
monotonic interval of u, one can obtain

F3 (u)− 4
3
B3

n ≤ M1

(
F2 (u)− 2A2

n

)
,

where F2 and F3 are defined in (1.7), and An and Bn in (3.12) with Mi and mi

being the maxima and minima of u, respectively. Hence, estimate (1.10) may
be obtained by following the proof of Lemma 3.6.
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