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Abstract. Predator-prey systems with linear and logistic intrinsic growth
rate of the prey are analyzed. The models incorporate the mutual interfer-
ence between predators into the functional response which stabilizes predator-
prey interactions in the system. Positive and elementary stable nonstandard
(PESN) finite-difference methods, having the same qualitative features as the
corresponding continuous predator-prey models, are formulated and analyzed.
The proposed numerical techniques are based on a nonlocal modeling of the
growth-rate function and a nonstandard discretization of the time derivative.
This discretization approach leads to significant qualitative improvements in
the behavior of the numerical solution. In addition, it allows for the use of an
essentially implicit method for the cost of an explicit method. Applications of
the PESN methods to specific predator-prey systems are also presented.

1. Introduction

Predator-prey systems are among the most discussed and analyzed topics in
mathematical biology. Their relatively simple form as a system of two differen-
tial equations allows for detailed understanding of their underlying behavior, even
though explicit solutions are not available in a closed form. A general predator-prey
model can be written as follows:

dx

dt
= p(x)− af(x, y)y; x(0) ≥ 0,

dy

dt
= f(x, y)y − µ(y); y(0) ≥ 0,

(1.1)

where x and y represent the prey and predator population sizes, and functions
p(x) and µ(y) describe the intrinsic growth rate of the prey and the mortality rate
of the predator, respectively. The transformation rate constant a represents the
assimilation efficiency of the predator. The function f(x, y) is called “functional
response” and represents the per capita predator “feeding rate” per unit time.

The majority of the scientific literature in the field of predator-prey systems as-
sumes that the predator mortality µ(y) depends linearly on the predator density
(µ(y) = dy), while the intrinsic growth rate of the prey p(x) has a linear (p(x) = bx)
or logistic (p(x) = bx(1−x/K)) expression. In this paper we embrace those assump-
tions and concentrate on the affect of the functional response f(x, y). Functions in
the form f(x, y) = f(x) have been used as a predominant “feeding rate” functions
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for decades. Among the most popular “prey-dependent” functional responses are

the Holling type I, II and III
(

f = αx, f =
αx

x + c
, f =

αx2

x2 + c

)
[14]. However,

in some situations they predict unrealistic population dynamics of the predator
or the prey. The main problem is that the linear expression of the functional
response in terms of the predator density does not account for the interference
between predators. This fact requires “predator-dependent” forms of f(x, y) as
the ratio-dependent type f =

αx

x + by
[3, 15, 19], the Beddington-DeAngelis type

f =
αx

b + wx + y
[2, 6], and Nicholson-Bailey form f = αxe−by [13], to name a few.

Analysis of the published experimental data shows that “predator-dependence” in
the functional response is a nearly ubiquitous property [25]. The following condi-
tions guarantee the biological relevance of the function f(x, y) as a capita “feeding
rate” function:

f(x, y) > 0,
∂f

∂x
> 0,

∂f

∂y
< 0, when (x, y) ∈ R2

+. (1.2)

These conditions express that unconditionally positive feeding rate is affected pos-
itively by an increase in prey density and negatively by the increase in predator
density due to interspecies interference.

Numerical simulations, based on finite difference approximations, such as Eu-
ler, Runge-Kutta and Adams methods, are widely used to predict the dynamics
of the interacting populations. Unfortunately, their stability and accuracy depend
strongly on the time step-size. That raises questions about the truncation errors,
the stability regions and, from a dynamical point of view, the accuracy at which
the dynamics of the continuous system are represented by the discrete system.
Lubuma and Roux [20] and Dimitrov and Kojouharov [9, 10], among others, have
used nonstandard techniques, developed by Mickens [22], to design elementary sta-
ble nonstandard (ESN) methods that preserve the local stability of equilibria of
the approximated differential system for arbitrary time step-sizes. However, the
ESN methods, as well as the standard numerical methods, do not guarantee a
positive discrete solution for all positive initial values. The positivity condition is
natural when predator-prey interactions are modeled and approximated numeri-
cally. Failing to satisfy it reflects negatively on the accuracy and efficiency of the
numerical methods. Recently, several positive and elementary stable nonstandard
(PESN) methods have been designed for some specific predator-prey [11, 12, 23],
phytoplankton-nutrient [8] and epidemic [18, 24] systems.

In this paper, we develop PESN numerical methods for predator-prey systems
(1.1) with general functional response f(x, y) of the form (1.2) that have only
hyperbolic equilibria. The equilibria-assumption is not too restrictive biologically,
since most natural predator-prey systems are structurally stable to a variety of
plausible biological changes. The new PESN methods preserve both the positivity
of the solutions and the stability of the equilibria of the corresponding predator-
prey system. In addition, the designed numerical approximations allow us to solve
the discrete systems explicitly, which increases the efficiency of the methods.

The paper is organized as follows. In Section 2 we provide some definitions and
preliminary results. In Sections 3 and 4 we analyze Systems (1.1) with linear and
logistic intrinsic prey growth rate, respectively, and design the corresponding PESN
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numerical methods. In the last two sections we illustrate our results by numerical
examples and outline some future research directions.

2. Definitions and Preliminaries

A general two-dimensional autonomous system has the following form:

dz

dt
= F (z); z(0) = (x(0), y(0))T ∈ R2

+, (2.1)

where z(t) = (x(t), y(t))T and the function F = [F 1, F 2]T : R2 7→ R2 is differen-
tiable in R2

+.
The equilibrium points of System (2.1) are defined as the solutions of F (z) = 0.

The condition (1.2) implies an existence of only finite number of equilibria of System
(1.1).

Definition 2.1. Let z∗ be an equilibrium of System (2.1), J(z∗) be the Jacobian
of System (2.1) at z∗ and σ(J(z∗)) denotes the spectrum of J(z∗). An equilibrium
z∗ of System (2.1) is called linearly stable if Re(λ) < 0 for all λ ∈ σ(J(z∗)) and
linearly unstable if Re(λ) > 0 for at least one λ ∈ σ(J(z∗)).

Throughout this article, we assume that System (2.1) has only hyperbolic equi-
libria, i.e., Re(λ) 6= 0, for λ ∈ ⋃

z∗∈Γ σ(J(z∗)), where Γ represents the set of all
equilibria of System (2.1).

A numerical scheme with a step size h, that approximates the solution z(tk) of
System (2.1) can be written in the form:

Dh(zk) = Fh(F ; zk), (2.2)

where Dh(zk) ≈
(

dx

dt
,
dy

dt

)T

, Fh(F ; zk) approximates the right-hand side of System

(2.1), zk ≈ z(tk), and tk = t0 + kh.
The stability of the fixed points of explicit numerical schemes of the form (2.2)

can be determined as follows:

Lemma 2.1. Assume that System (2.2) has the following explicit form:

zk+1 = G(zk), (2.3)

where the function G = [G1, G2]T : R2 7→ R2 is differentiable. A fixed point z∗ of
System (2.3) is stable if and only if all eigenvalues of J(z∗) are less than one in
absolute values, where J(z∗) denotes the Jacobian of System (2.3).

When analyzing the eigenvalues of J(z∗) we will make use of the following lemma
[5, p. 82]:

Lemma 2.2. Roots of the quadratic equation λ2+αλ+β = 0 satisfy |λi| < 1, i = 1, 2
if and only if the following three conditions hold:

(a) 1 + α + β > 0;
(b) 1− α + β > 0; and
(c) β < 1.

The next definition deals with the dynamical correspondence between a differ-
ential system and a numerical method regarding the stability of their equilibrium
points [1].
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Definition 2.2. The finite difference method (2.2) is called elementary stable, if,
for any value of the step size h, its only fixed points z∗ are the equilibria of the
differential system (2.1), the linear stability properties of each z∗ being the same
for both the differential system and the discrete method.

The form of the predator-prey system (1.1) guarantees that any solution with
positive initial conditions remains positive in time. The corresponding requirement
for numerical methods is formulated in the following definition:

Definition 2.3. The finite difference method (2.2) is called unconditionally posi-
tive, if, for any value of the step size h, and z(0) ∈ R2

+ its solution remains positive,
i.e., zk ∈ R2

+ for k = 1, 2, 3, . . ..

The numerical methods developed in this paper are dynamically consistent with
the differential system (1.1), by means of the above two definitions, and belong
to the class of nonstandard finite-difference methods according to the following
definition [1]:

Definition 2.4. The one-step method (2.2) for solving System (2.1) is called a
nonstandard finite-difference method if at least one of the following conditions is
satisfied:

• Dh(zk) =
zk+1 − zk

ϕ(h)
, where ϕ(h) = h +O(h2) is a nonnegative function;

• Fh(F ; zk) = f(zk, zk+1, h), where f(zk, zk+1, h) is a nonlocal approximation
of the right-hand side of System (2.1).

3. PESN methods for predator-prey systems with linear intrinsic
growth rate of the prey

In this section we analyze System (1.1) with linear intrinsic growth rate of the
prey, i.e., p(x) = bx, which has the following non-dimensional form:

dx

dt
= x− af(x, y)y; x(0) ≥ 0,

dy

dt
= f(x, y)y − dy; y(0) ≥ 0.

(3.1)

Depending on the values of the parameters, System (3.1) has the following equi-
libria:

(1) The trivial equilibrium (x0, y0) = (0, 0);
(2) An interior equilibrium (x∗, y∗) satisfying f(x∗, y∗) = d and x∗ = ady∗.

Analyzing the global qualitative behavior of all solutions of System (3.1), the
following statements about the stability of the equilibria are true:

(1) The trivial equilibrium (x0, y0) is always linearly unstable;
(2) The interior equilibrium (x∗, y∗) is linearly stable if

D(x∗, y∗) =
∂f

∂y
(x∗, y∗) + ad

∂f

∂x
(x∗, y∗) > 0

and

T (x∗, y∗) = 1 +
∂f

∂y
(x∗, y∗)y∗ − a

∂f

∂x
(x∗, y∗)y∗ < 0
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are satisfied simultaneously.

The numerical schemes described in the following theorem represent PESN meth-
ods, provided that System (3.1) with linear intrinsic growth rate of the prey popu-
lation has only hyperbolic equilibria:

Theorem 3.1. Let φ be a real-valued function on R that satisfies the property:

φ(h) = h + O(h2) and 0 < φ(h) < 1 for all h > 0. (3.2)

There exists a constant Q > 0 such that the following scheme for solving System
(3.1) represents a PESN method:

xk+1 − xk

ϕ(h)
= xk − ag(xk, yk)xk+1yk,

yk+1 − yk

ϕ(h)
= f(xk, yk)yk − dyk+1,

(3.3)

where g(x, y) = f(x,y)
x is differentiable in R̄2

+ and ϕ(h) has the form ϕ(h) = φ(hq)/q
for some q > Q.

Proof. Let us denote h1 = ϕ(h) =
φ(hq)

q
. Note that if q > Q then 0 < h1 <

1
Q

.

The explicit expression of the nonstandard scheme (3.3) has the form:

xk+1 =
(1 + h1)xk

1 + ah1g(xk, yk)yk
,

yk+1 =
(1 + h1f(xk, yk))yk

1 + h1d
.

(3.4)

Since the constants a, e and d are positive then the scheme (3.4) is unconditionally
positive and its fixed points are exactly the equilibria of System (3.1).

We analyze the stability of those fixed points using Lemma 2.1. The Jacobian J
of Scheme (3.4) has the form J(x, y) = (jij(x, y))2×2, where

j11(x, y) =
(1 + h1)(1 + ah1g(x, y)y)− ah1(1 + h1) ∂g

∂x (x, y)xy

(1 + ah1g(x, y)y)2
,

j12(x, y) = − ah1(1 + h1)x
(1 + ah1g(x, y)y)2

(
g(x, y) +

∂g

∂y
(x, y)y

)
,

j21(x, y) =
h1

∂f
∂x (x, y)y
1 + h1d

, and j22(x, y) =
1 + h1f(x, y) + h1

∂f
∂y (x, y)y

1 + h1d
.

Eigenvalues of J at the trivial equilibrium (0, 0) are 1 + h1 and 1
1+h1d , i.e.,

(0, 0) is always unstable. Therefore the behavior of System (3.3) around the trivial
equilibrium is dynamically consistent with the behavior of System (3.1)
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Since f(x, y) = g(x, y)x then ∂f
∂x (x, y) = ∂g

∂x (x, y)x + g(x, y) and ∂f
∂y (x, y) =

∂g
∂y (x, y)x. In addition, ag(x∗, y∗)y∗ = 1 at any interior equilibrium (x∗, y∗). There-
fore the Jacobian J∗ := J(x∗, y∗) can be simplified as follows:

J∗ =




1 + 2h1

1 + h1
− ah1

1 + h1

∂f

∂x
(x∗, y∗)y∗ − adh1

1 + h1
− ah1

1 + h1

∂f

∂y
(x∗, y∗)y∗

h1

1 + dh1

∂f

∂x
(x∗, y∗)y∗ 1 +

h1

1 + dh1

∂f

∂y
(x∗, y∗)y∗




Eigenvalues λ1 and λ2 of J(x∗, y∗) are roots of the quadratic equation:

λ2 − αλ + β = 0,

where
α =

2 + 3h1

1 + h1
− ah1

1 + h1

∂f

∂x
(x∗, y∗)y∗ +

h1

1 + dh1

∂f

∂y
(x∗, y∗)y∗

and
β =

1 + 2h1

1 + h1
− ah1

(1 + h1)(1 + dh1)
∂f

∂x
(x∗, y∗)y∗

+
h1(1 + 2h1)

(1 + h1)(1 + dh1)
∂f

∂y
(x∗, y∗)y∗.

The fixed point (x∗, y∗) is stable if and only if all three conditions of Lemma
2.2 hold and (x∗, y∗) is unstable if at least one of the conditions fails. Note that
α = α(h1) and β = β(h1) are continuous functions of h1 for h1 > 0. In addition,
α(0) = 2 and β(0) = 1, which implies that there exist constants Ã(x∗,y∗) > 0 such
that 1 + α(h1) + β(h1) > 0 for all 0 < h1 < Ã(x∗,y∗).

Assume that (x∗, y∗) is a stable equilibrium of System (3.1). Therefore D(x∗, y∗) >
0 and T (x∗, y∗) < 0. Since D(x∗, y∗) > 0 then

1− α + β =
h2

1

(1 + h1)(1 + dh1)
y∗D(x∗, y∗) > 0

and Condition (b) of Lemma 2.2 holds. The last condition of Lemma 2.2 is equiv-
alent to

T (x∗, y∗) + h1

(
d + 2

∂f

∂y
(x∗, y∗)y∗

)
< 0. (3.5)

Clearly, if d + 2∂f
∂y (x∗, y∗)y∗ ≤ 0 then the above inequality is always satisfied.

If d + 2∂f
∂y (x∗, y∗)y∗ > 0 the inequality (3.5) is true when h1 < A(x∗,y∗), where

A(x∗,y∗) =
|T (x∗, y∗)|

|d + 2∂f
∂y (x∗, y∗)y∗| . Therefore, if h1 < min(A(x∗,y∗), Ã(x∗,y∗)) all three

conditions of Lemma 2.2 are satisfied and (x∗, y∗) is a stable fixed point of System
(3.3).

Assume that (x∗, y∗) is an unstable equilibrium of System (3.1). Therefore
D(x∗, y∗) < 0 or T (x∗, y∗) > 0. As we describe above D(x∗, y∗) < 0 implies
that Condition (b) of Lemma 2.2 fails. On the other hand, if T (x∗, y∗) > 0 then
Inequality (3.5) is never satisfied, provided that d + 2∂f

∂y (x∗, y∗)y∗ ≥ 0. Condition
(c) of Lemma 2.2 also fails if d + 2∂f

∂y (x∗, y∗)y∗ < 0 and h1 < A(x∗,y∗). There-
fore the unstable behavior of the system (3.1) around (x∗, y∗) is preserved when
h1 < A(x∗,y∗).
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Finally, if we select

Q = max
(x∗,y∗)∈Γ̃

(
1

A(x∗,y∗)
,

1
Ã(x∗,y∗)

)
,

where Γ̃ represents the set of all equilibria of System (3.1), then

h1 < min(A(x∗,y∗), Ã(x∗,y∗))

for every equilibrium point (x∗, y∗), which guarantee dynamical consistence between
the differential system (3.1) and the numerical scheme (3.3) around all equilibria.

¤
Remark 3.1. If we want to determine a specific value for Q we need to evaluate
the constants Ã(x∗,y∗). After some lengthy calculations one derives the following:

1 + α(h1) + β(h1) > 0 ⇐⇒ Bh2
1 + Ch1 + 4 > 0,

where B = 6d +
(
4∂f

∂y (x∗, y∗)−D(x∗, y∗)
)

y∗ and C = 4 + 4d + 2T (x∗, y∗). There-

fore, the constant Ã(x∗,y∗) can be selected as follows:

Ã(x∗,y∗) =





2√
|B| , C = 0

4
|C| , B = 0

min
(
|C|
|B| ,

2
|C|

)
, otherwise

4. PESN methods for predator-prey systems with logistic intrinsic
growth rate of the prey

In this section we analyze System (1.1) with logistic intrinsic growth rate of the
prey, i.e., P (x) = bx(1− x/K), which has the following non-dimensional form:

dx

dt
= x(1− x)− af(x, y)y; x(0) ≥ 0,

dy

dt
= f(x, y)y − dy; y(0) ≥ 0.

(4.1)

Depending on the values of the parameters, System (4.1) has the following equi-
libria:

(1) The trivial equilibrium (x0, y0) = (0, 0);
(2) A boundary equilibrium (x1, y1) = (1, 0); and
(3) An interior equilibrium (x∗, y∗) satisfying f(x∗, y∗) = d and x∗(1 − x∗) =

ady∗.
According the stability analysis of System (3.1), the following statements about

the stability of the equilibria are true:
(1) The trivial equilibrium (x0, y0) is always linearly unstable;
(2) The boundary equilibrium (x1, y1) is stable if f(1, 0) < d and unstable

otherwise;
(3) The interior equilibrium (x∗, y∗) exist only if f(1, 0) > d, i.e., when the

boundary equilibrium (x1, y1) is unstable. The interior equilibrium is lin-
early stable if

D(x∗, y∗) = (1− 2x∗)
∂f

∂y
(x∗, y∗) + ad

∂f

∂x
(x∗, y∗) > 0
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and

T (x∗, y∗) = 1− 2x∗ +
∂f

∂y
(x∗, y∗)y∗ − a

∂f

∂x
(x∗, y∗)y∗ < 0

are satisfied simultaneously.
The numerical schemes described in the following theorem represent PESN meth-

ods, provided that System (4.1) with logistic intrinsic growth rate of the prey pop-
ulation has only hyperbolic equilibria:

Theorem 4.1. Let φ be a real-valued function on R that satisfies the property (3.2).
There exists a constant Q > 0 such that the following scheme for solving System
(4.1) represents a PESN method:

xk+1 − xk

ϕ(h)
= xk − xk+1xk − ag(xk, yk)xk+1yk,

yk+1 − yk

ϕ(h)
= f(xk, yk)yk − dyk+1,

(4.2)

where g(x, y) = f(x,y)
x is differentiable in R̄2

+ and ϕ(h) has the form ϕ(h) = φ(hq)/q
for q > Q.

Proof. Since this proof repeats all of the major steps in the proof of Theorem
3.1, most of the same extensive calculations are omitted here. We again denote

h1 = ϕ(h) =
φ(hq)

q
. The explicit expression of the nonstandard scheme (4.2) has

the form:

xk+1 =
(1 + h1)xk

1 + ah1g(xk, yk)yk + h1xk
,

yk+1 =
(1 + h1f(xk, yk))yk

1 + h1d
.

(4.3)

Positivity of constants a, e and d implies unconditionally positivity of the scheme
(4.3). Note that the fixed points of the method (4.3) are exactly the equilibria of
System (4.1).

Eigenvalues of J at the trivial equilibrium (x0, y0) are 1 + h1 and 1
1+dh1

, i.e.,
(x0, y0) is always unstable, which is consistent with the dynamical behavior of
System (4.1). The Jacobian at the boundary equilibrium (x1, y1) has eigenvalues

1
1+h1

and 1+h1f(1,0)
1+dh1

. Therefore, the fixed point (x1, y1) is stable if f(1, 0) < d,
which is precisely when (x1, y1) is a stable equilibrium of System (4.1). Using
that f(x, y) = g(x, y)x and the fact that ag(x∗, y∗)y∗ + x∗ = 1, the Jacobian
J(x∗, y∗) = (jij(x∗, y∗))2×2, at an interior equilibrium (x∗, y∗), can be simplified as
follows:

j11(x∗, y∗) =
1 + 2h1

1 + h1
− h1

1 + h1

(
2x∗ + a

∂f

∂x
(x∗, y∗)y∗

)
,

j12(x∗, y∗) = − ah1

1 + h1

(
d +

∂f

∂y
(x∗, y∗)y∗

)
,

j21(x∗, y∗) =
h1

1 + dh1

∂f

∂x
(x∗, y∗)y∗, and

j22(x∗, y∗) = 1 +
h1

1 + dh1

∂f

∂y
(x∗, y∗)y∗.
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Eigenvalues λ1 and λ2 of J(x∗, y∗) are roots of the quadratic equation:

λ2 − αλ + β = 0,

where

α =
2 + 3h1 − 2h1x

∗

1 + h1
− ah1

1 + h1

∂f

∂x
(x∗, y∗)y∗ +

h1

1 + dh1

∂f

∂y
(x∗, y∗)y∗

and

β =
1 + 2h1(1− x∗)

1 + h1
− ah1

(1 + h1)(1 + dh1)
∂f

∂x
(x∗, y∗)y∗

+
h1(1 + 2h1(1− x∗))
(1 + h1)(1 + dh1)

∂f

∂y
(x∗, y∗)y∗.

Functions α = α(h1) and β = β(h1) are continuous in h1 for h1 > 0 and they take
values α(0) = 2 and β(0) = 1 at zero. Therefore, there exist constants Ã(x∗,y∗) > 0
such that 1 + α(h1) + β(h1) > 0 for all 0 < h1 < Ã(x∗,y∗).

Condition (b) of Lemma 2.2, i.e., 1 − α + β > 0, is equivalent to D(x∗, y∗) > 0
while Condition (c) of Lemma 2.2 leads to

T (x∗, y∗) + h1

(
d(1− 2x∗) + 2

∂f

∂y
(x∗, y∗)y∗(1− x∗)

)
< 0. (4.4)

The former inequality is satisfied when h1 < A(x∗,y∗), where

A(x∗,y∗) =
|T (x∗, y∗)|

|d(1− 2x∗) + 2∂f
∂y (x∗, y∗)y∗(1− x∗)| .

Similarly to the proof of Theorem 3.1 we conclude that if h1 < min(A(x∗,y∗), Ã(x∗,y∗))
then the dynamical behavior of the numerical scheme (4.2) around an equilibrium
(x∗, y∗) is consistent with the behavior of System (4.1). When (x∗, y∗) is a stable
equilibrium of System (4.1) then it is also a stable fixed point of System (4.2) and
vice versa.

Selection of

Q = max
(x∗,y∗)∈Γ̃

(
1

A(x∗,y∗)
,

1
Ã(x∗,y∗)

)
,

where Γ̃ represents the set of all interior equilibria of System (4.1), guarantees that
h1 < min(A(x∗,y∗), Ã(x∗,y∗)) for every equilibrium point (x∗, y∗). ¤

Remark 4.1. Similarly to the case in the previous section, the calculation of a
specific value for Q requires evaluations of the constants Ã(x∗,y∗). Condition (a) of
Lemma 2.2 is equivalent to

Bh2
1 + Ch1 + 4 > 0,

where

B = 2d(3− 2x∗) +
(

4(1− x∗)
∂f

∂y
(x∗, y∗)−D(x∗, y∗)

)
y∗

and
C = 4 + 4d + 2T (x∗, y∗).



10 D.T. DIMITROV AND H.V. KOJOUHAROV

2 4 6 8 10 12 14
1

2

3

4

5

6

7

Prey Density

P
re

da
to

r 
D

en
si

ty

PESN method
Patankar−Euler method

(a) h = 0.4, x(0) = 7.5, y(0) = 5.0
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(b) h = 0.8, x(0) = 0.6, y(0) = 5.0
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(c) h = 0.4, x(0) = 4.2, y(0) = 0.7
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Figure 1. Numerical approximations of the solutions of
Beddington-DeAngelis predator-prey systems with linear (top) and
logistic (bottom) intrinsic growth rate of the prey.

Therefore, the constant Ã(x∗,y∗) can be selected as follows:

Ã(x∗,y∗) =





2√
|B| , C = 0

4
|C| , B = 0

min
(
|C|
|B| ,

2
|C|

)
, otherwise

5. Numerical Simulations

To illustrate the advantages of the designed PESN finite-difference methods,
we first consider predator-prey systems with Beddington-DeAngelis functional re-
sponse f(x, y) =

ex

b + x + y
.

The first set of simulations (Fig.1-a,b) compares different numerical approxi-
mations of the system with a linear intrinsic growth (3.1). Mathematical analy-
sis of System (3.1) with Beddington-DeAngelis functional response and constants
a = 0.75, d = 2.25, b = 1.0 and e = 4.0 shows that the equilibrium (x0, y0) = (0, 0)
is unstable, while the equilibrium (x∗, y∗) = ( 27

5 , 16
5 ) is globally asymptotically sta-

ble in the interior of the first quadrant [7]. The scheme (3.3) represents a PESN
method for q > Q = 4, so we select q = 4.5 in our experiment. The first simula-
tion (Fig.1-a) compares approximations obtained by the PESN method (3.3) and
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(a) h = 0.76, x(0) = 8.0, y(0) = 2.0
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(b) h = 0.33, x(0) = 5.0, y(0) = 1.0

Figure 2. Numerical approximations of the solutions of
Nicholson-Bailey predator-prey systems with linear (left) and lo-
gistic (right) intrinsic growth rate of the prey.

the Patankar-Euler method [4]. The Patankar Euler method is positive, but not
elementary stable, which leads to divergence of its solution for a step-size h = 0.4.
The second simulation (Fig.1-b) compares the PESN method (3.3) and the fourth-
order Runge-Kutta method. In this example, the Runge-Kutta method, which
is not elementary stable, fails to express the correct asymptotic behavior of the
corresponding predator-prey system and the numerical solution diverges.

The next set of simulations (Fig.1-c,d) compares approximations of the system
with a logistic intrinsic growth (4.1) and Beddington-DeAngelis functional response.
Mathematical analysis of System (4.1) with constants a = 1.5, d = 0.25, b = 0.02
and e = 1.0 shows that equilibria (x0, y0) = (0, 0), (x1, y1) = (1, 0) and (x∗, y∗) =
(0.0443, 0.1127) are unstable and all solutions approach an unique limit cycle, which
is globally asymptotically stable in the interior of the first quadrant [16, 17]. The
scheme (4.2) represents a PESN method for q > Q = 0.549, so we select q =
1 in this example. The first simulation (Fig.1-c) compares the approximations
of the solution, starting at (4.2, 0.7), obtained by the PESN method (3.3) and
the fourth-order Runge-Kutta method with step-size h = 0.4. The Runge-Kutta
approximation diverges, while the PESN method expresses the correct asymptotic
behavior of the predator-prey system and converges to a limit cycle. However, this
limit cycle does not exactly coincide with the real attractor. The last simulation
(Fig.1-d) shows that we can a obtain better approximation of the limit cycle by
increasing the value of q in the PESN method.

Our second example of a “predator-dependent” functional response, f(x, y), is
the Nicholson-Bailey form f(x, y) = xe−by. Mathematical analysis of System (3.1)
with Nicholson-Bailey functional response and constants a = 3.0, d = 2.0 and b =
1.0 shows that the equilibrium (x0, y0) = (0, 0) is unstable, while the equilibrium
(x∗, y∗) = (3.7144, 0.6191) is asymptotically stable, but not globally stable in the
interior of the first quadrant. Solutions that start outside of its basin of attraction
are unbounded. The scheme (3.3) represents a PESN method without restrictions
for q. Therefore we can use the scheme (3.3) with ϕ(h) = h. The simulation
(Fig.1-a) compares approximations of the solution, starting at point (8, 2), which is
inside of the basin of attraction of the equilibrium (x∗, y∗), obtained by the PESN
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method (3.3) and second- and fourth-order Runge-Kutta methods. For a step-size
h = 0.76 the Runge-Kutta approximations diverge, while the PESN approximation
converges to the equilibrium (x∗, y∗).

Finally, we consider the predator-prey system with a logistic intrinsic growth
(4.1) and Nicholson-Bailey functional response. Mathematical analysis of System
(4.1) with constants a = 5.0, d = 0.3 and b = 1.0 shows that the equilibria
(x0, y0) = (0, 0), (x1, y1) = (1, 0) are unstable, while (x∗, y∗) = (0.3216, 0.165)
is globally asymptotically stable in the interior of the first quadrant. The scheme
(4.2) represents a PESN method for q > Q = 0.107, so we select q = 0.2 in this
example. The simulation (Fig.1-b) compares the approximations of the solution,
starting at (5.0, 1.0), obtained by the PESN method (3.3) and second- and the
fourth-order Runge-Kutta methods with step-size h = 0.33. The Runge-Kutta ap-
proximations diverge, while the PESN method expresses the correct asymptotic
behavior of System (4.1) and converges toward the equilibrium (x∗, y∗).

In all of the above simulations the PESN method follows accurately the dynamics
of System (2.1), while the standard numerical methods are dynamically inconsistent
and fail to preserve the stability of equilibria, the positivity of the trajectories,
and/or the regions of attraction for a variety of time-step sizes. Problems in the use
of the standard numerical methods arise not only because they are not elementary
stable but also because the methods are not unconditionally positive, which is
a natural requirement to have when approximating biological systems. However,
the positivity-preserving property is not a sufficient condition that guarantees the
asymptotic consistence of numerical solutions. An example of that is the Patankar-
Euler method, which is unconditionally positive but not elementary stable and
expresses serious numerical problems for large time-steps.

6. Conclusions

Positive and elementary stable nonstandard (PESN) numerical methods were
developed for predator-prey systems with general functional response that have
only hyperbolic equilibria. The designed new PESN methods preserve two of the
most important dynamical characteristics of the corresponding systems, namely
the stability of all equilibria and the positivity of all solutions with positive initial
conditions. The value of the constant Q in the PESN methods depends on the par-
ticular system (1.1) and the specific functional response function f(x, y). Usually,
it requires some information about the existing equilibria and can be defined as a
simple expression in terms of the parameters of the systems.

The numerical solutions of the developed PESN methods are dynamically con-
sistent and express the correct asymptotic behavior of the corresponding predator-
prey systems for arbitrary large time-steps. In addition, the PESN approach allows
for the use of an essentially implicit method for the cost of an explicit one, which
makes the methods a computationally effective tool in simulations of the dynamics
of predator-prey systems.

Future research directions include the design and analysis of PESN methods for
biological systems with non-hyperbolic equilibria.



NUMERICAL METHODS FOR PREDATOR-PREY MODELS 13

References

[1] Anguelov R., Lubuma J.M.-S., Contributions to the mathematics of the nonstandard finite
difference method and applications, Numer. Methods Partial Diff. Equations 17:5, (2001)
518-543.

[2] Beddington J.R., Mutual interference between parasites or predators and its effect on search-
ing efficiency, J. Animal Ecol. 44, (1975) 331-340.

[3] Berezovskaya F., Karev G., Arditi R., Parametric analysis of the ratio-dependent predator-
prey model, J. Math. Biol. 43, (2001) 221-246.

[4] Burchard H., Deleersnijder E., Meister A., A high-order conservative Patankar-type dis-
cretization for stiff systems of production-destruction equations, Appl. Numer. Math. 47:1,
(2003) 1-30.

[5] Brauer F., Castillo-Chavez C., Mathematical Models in Population Biology and Epidemiology
(Springer-Verlag, New York 2001).

[6] DeAngelis D. L., Goldstein R.A., O’Neill R.V., A model for trophic interaction, Ecology 56,
(1975) 881-892.

[7] Dimitrov D.T., Kojouharov H.V., Complete mathematical analysis of predator-prey models
with linear prey growth and Beddington-DeAngelis functional response, Appl. Math. Com-
put., 162:2, (2005) 523-538.

[8] Dimitrov D.T., Kojouharov H.V., Analysis and numerical simulation of phytoplankton-
nutrient systems with nutrient loss, Math. Comput. Simulation, 70:1 (2005) 33-43.

[9] Dimitrov D.T., Kojouharov H.V., Nonstandard finite-difference schemes for general two-
dimensional autonomous dynamical systems, Appl. Math. Lett., 18:7, (2005) 769-774.

[10] Dimitrov, D.T. and Kojouharov, H.V., Stability-preserving finite-difference methods for gen-
eral multi-dimensional autonomous dynamical systems, Int. J. Numer. Anal. Model., 4:2,
(2007) 282-292.

[11] Dimitrov, D.T. and Kojouharov, H.V., Positive and Elementary Stable Nonstandard Numer-
ical Methods with Applications to Predator-Prey Models, J. Comput. Appl. Math., 189:1-2
(2006) 98-108.

[12] Dimitrov, D.T. and Kojouharov, H.V., Nonstandard Numerical Methods for a Class of
Predator-Prey Models with Predator Interference, Electron. J. Diff. Eqns., 15 (2007) 67-75.

[13] Doebeli, M., Genetic variation and the persistence of predator-prey interactions in the
Nicholson-Bailey model, Journal of Theoretical Biology 188, (1997) 109-120.

[14] Holling C.S., The functional response of predators to prey density and its role in mimicry
and population regulation, Mem. Entomol. Soc. Canada 45, (1965) 1-60.

[15] Hsu S.-B., Hwang T.-W., Kuang Y., Global analysis of the Michaelis-Menten-type ratio-
dependent predator-prey system, J. Math. Biol. 42, (2001) 489-506.

[16] Hwang, T.-W., Global analysis of the predator-prey system with Beddington-DeAngelis func-
tional response, J. Math. Anal. Appl. 281, (2003) 395-401.

[17] Hwang, T.-W., Uniqueness of limit cycles of the predator-prey system with Beddington-
DeAngelis functional response, J. Math. Anal. Appl. 290, (2004) 113-122.

[18] Jansen H. and Twizell E.H., An unconditionally convergent discretization of the SEIR model,
Math. Comput. Simulation 58, (2002) 147-158.

[19] Kuang Y. and Beretta E., Global qualitative analysis of a ratio-dependent predator-prey
system, J. Math. Biol. 36, (1998) 389-406.

[20] Lubuma J.M.-S. and Roux A., An improved theta-method for systems of ordinary differential
equations, J. Differ. Equations Appl. 9:11, (2003) 1023-1035.

[21] May, R.M., Stability and Complexity in Model Ecosystem (Princeton Univ. Press, Princeton
1974)

[22] Mickens, R. E., Nonstandard finite difference model of differential equations (World Scientific,
Singapore 1994)

[23] Moghadas S.M., Alexander M.E., Corbett B.D., A non-standard numerical scheme for a
generalized Gause-type predator-prey model, Phys. D 188, (2004) 134-151.

[24] Piyawong W., Twizell E.H., Gumel A.B., An unconditionally convergent finite-difference
scheme for the SIR model, Appl. Math. Comput. 146, (2003) 611-625.

[25] Skalski G.T., Gilliam J. F., Functional responses with predator interference: viable alterna-
tives to the Holling Type II model, Ecology, 82:11, (2001) 3083-3092.



14 D.T. DIMITROV AND H.V. KOJOUHAROV

Dobromir T. Dimitrov
Department of Ecology and Evolutionary Biology, University of Tennessee at Knoxville,
Knoxville, TN 37996-1610, USA

E-mail address: ddimitr1@utk.edu

Hristo V. Kojouharov
Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019-
0408, USA

E-mail address: hristo@uta.edu


