
http://www.uta.edu/math/preprint/

Technical Report 2007-14

Weighted Compact and Non-
compact Scheme for Shock Tube 
and Shock Entropy Interaction

Peng Xie
Chaoqun Liu



 

American Institute of Aeronautics and Astronautics 

 

1 

Weighted Compact and Non-compact Scheme for Shock 

Tube and Shock Entropy Interaction 

Peng Xie
1
 and Chaoqun Liu

2
 

Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019 

 [Abstract] In this paper, we introduce a new type of high order shock capturing schemes 

– uniform weighted compact and non-compact scheme (UWCNC) or simply XJL scheme 

developed by Xie, Jiang and Liu. This new scheme is based on the feature of discrete data 

sets instead of the physics. The fundamental task of CFD is to provide an accurate 

approximation of derivatives for a given discrete data set. The data are first normalized then 

measured by so called “smoothness”. According to the smoothness, the set is divided into 

three regions: smooth, oscillatory, and non-differentiable (shock) regions. The strategy of 

this new scheme is to achieve spectral-like resolution and high order of accuracy by using 

central weighted compact scheme in smooth and oscillatory regions and use the non-compact 

scheme to cross the shock to capture shocks sharply without oscillation. In a 6th order one 

parameter family of the compact schemes (Lele, 1992), we turn the control parameter  to 1/3, 

keeping the exact formulation of the 6th order weighted compact scheme and turn it to zero 

gradually when approaching the shock, which makes the scheme non-compact. Besides the 

WENO weights, there is only one additional control parameter, which we call smoothness 

function. In this new uniform weighted compact-non compact scheme, a sixth-order 

weighted compact scheme and a corresponding fourth-order weighted non-compact scheme 

are combined following this basic idea. Numerical tests show that the new scheme has 

captured the 1-D shock sharply without non-physical oscillation and obtained much higher 

resolution for 1-D shock-entropy interaction than the 5th order WENO scheme. 

I. Introduction 

1.1  A short overview on shock capturing schemes 

 

he flow filed is in general governed by the Navier-Stokes system which is a system of time dependent partial 

differential equations. However, for external flows, the viscosity is important largely only in the boundary 

layers. The main flow can still be considered as inviscid and the governing system can be dominated by the time 

dependent Euler equations which are hyperbolic. The difficult problem with numerical solution is the shock 

capturing which can be considered as a discontinuity or mathematical singularity (no classical unique solution and 

no bounded derivatives). In the shock area, continuity and differentiability of the governing Euler equations are lost 

and only the weak solution in an integration form can be obtained. The shock can be developed in some cases 

because the Euler equation is non-linear and hyperbolic. On the other hand, the governing Navier-Stokes system 

presents parabolic type behavior in and is therefore dominated by viscosity or second order derivatives. One expects 

that the equation should be solved by high order central difference scheme, high order compact scheme is preferable, 

to get high order accuracy and high resolution. High order of accuracy is critical in resolving small length scales in 

flow transition and turbulence process. However, for the hyperbolic system, the analysis already shows the existence 

of characteristic lines and Riemann invariants. Apparently, the upwind finite difference scheme coincides with the 

physics for a hyperbolic system. History has shown the great success of upwind technologies. We should consider 

not only the eigenvalues and eigenvectors of the Jacobian system, but also non-linearity including the Rankine-

Hugoniot shock relations. From the point of view of shocks, it makes no sense to use high order compact scheme for 

shock capturing which use all gird points on one grid line to calculate the derivative by solving a tri-diagonal or 

penta-diagonal linear system when shock does not have finite derivatives and downstream quantities cannot cross 
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shock to affect the upstream points. From the point of view of the above statement, upwind scheme is appropriate 

for the hyperbolic system. Many upwind or bias upwind schemes have achieved great success in capturing the 

shocks sharply, such as Godunov (1959), Roe (1981), MUSCL (Van Leer, 1979), TVD (Harten, 1983), ENO 

(Harten et al, 1987; Shu et al, 1988, 1989) and WENO (Liu et al, 1994; Jiang et al, 1996). Roe’s scheme may be 

better in capturing the shock sharply because it satisfies the Rankine-Hugoniot relation. Of course, Roe’s method 

can also be considered as a method for flux difference splitting and any high order method such as ENO and WENO 

can use Roe’s method as a splitting method. However, all these shock-capturing schemes are based on upwind or 

bias upwind technology, which is nice for hyperbolic system, but is not favorable to the N-S system which presents 

parabolic equation behavior. The small length scale is very important in the flow transition and turbulence process 

and thus very sensitive to any artificial numerical dissipation. High order compact scheme (Lele, 1992; Visbal, 

2002) is more appropriate for simulation of flow transition and turbulence because it is central and non-dissipative 

with high order accuracy and high resolution. 

 

Unfortunately, the shock-boundary layer interaction, which is important to high speed flow, is a mixed type 

problem which has shock (discontinuity), boundary layer (viscosity), separation, transition, expansion fans, fully 

developed turbulence, and reattachment. In order to capture the shock and keep high order accuracy and high 

resolution in the smooth area, we have developed the so called weighted compact scheme (WCS, Jiang et al, 2001) 

which works very well for 1-D convection equation, Burger’s equation, but not so good for Euler’s equation with 

shocks. Visible wiggles have been found near the shock. In the case of shock-boundary layer interaction, there are 

elliptic areas (separation, transition, turbulence) and hyperbolic areas (main flow, shocks, expansion fans), which 

makes the accurate numerical simulation extremely difficult if not impossible. We have to divide the computational 

domain to several parts: the elliptic, hyperbolic, and mixed. The division or detection can be performed by switch 

function automatically such as shock detector which simply sets for the shock area and for the rest. The switch 

function may give the best results for shock-boundary layer interaction, but it will have too many logical statements 

in the code which may slow down the computation. The switch function could also be case-related and very difficult 

to adjust. It would also slow down the convergence for steady problems. The use of “weights” will be naturally 

considered as a good candidate that succeeded for many schemes, WENO is a good example and our Weighted 

Compact Scheme is another example. 

 

Traditional finite difference schemes use the idea of Lagrange interpolation. To obtain the n-th order of accuracy, 

a stencil covering n+1 grid points is needed. In other words, the derivative at a certain grid point depends upon the 

function values at these n+1 grid points and only these grid points. In contrast, standard compact schemes (Lele, 

1992; Visbal, 2002) use the idea of Hermitian interpolation. By using derivatives as well as function values, a 

compact scheme achieves high order of accuracy without increasing the width of stencils. As discussed in Lele’s 

paper, a compact scheme has not only high order of accuracy, but also high resolution. Fourier analysis indicates 

that, with the same order of accuracy, a compact scheme has better spectral resolution than a traditional, explicit 

finite difference scheme. For this reason, compact schemes are favorable in the simulation of turbulent flows where 

small-length-scale structures are important. 

 

Due to the usage of derivatives, compact schemes usually give us a tri-diagonal or penta-diagonal system. 

Although the tri-diagonal matrix is sparse, the inverse of a tri-diagonal matrix is dense, which means the derivative 

at a certain grid point depends upon all the grid points along a grid line. The success of compact schemes indicates 

that the global dependency is very important for high resolution. However, the global dependency is good for 

resolution but not so applicable for shock capturing. 

 

The basic idea proposed in ENO (Harten et al, 1987) and WENO (Jiang et al, 1996) schemes is to avoid the 

stencil containing a shock. ENO chooses the smoothest stencil from several candidates to calculate the derivatives. 

WENO controls the contributions of different stencils according to their smoothness. In this way, the derivative at a 

certain grid point, especially one near the shock, is dependent on a very limited number of grid points. The local 

dependency here is favorable for shock capturing and helps obtaining the non-oscillatory property. The success of 

ENO and WENO schemes indicates that the local dependency is critical for shock capturing. 

 

The Weighted Compact Scheme (WCS) we developed (Jiang et al, 2001) is constructed by introducing the idea 

of WENO scheme to the standard compact schemes which uses weights for several candidates. The building block 

for each candidate is a Lagrange polynomial in WENO, but is Hermite in WCS. Therefore WCS achieves a higher 

accuracy with same stencil width. In shock regions, WCS controls the contributions of different candidate stencils to 
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minimize the influence of the candidate which contains a shock. In smooth regions where shocks are not present, 

WCS recovers to the standard compact scheme to achieve high accuracy and resolution. The numerical tests indicate 

that original WCS works fine in some cases such as convection equation and Burger’s equation, but not very well 

for Euler equation. As mentioned above, the usage of derivatives by compact schemes results in the global 

dependency. Although WCS tries to minimize the influence by reducing the weight, the stencil containing a shock is 

still used with smaller a weight leading to the global dependency. 

 

In order to overcome the drawback of the WCS scheme, we need to achieve local dependency in shock regions 

and recover the global dependency in smooth regions. This fundamental idea will naturally lead to a combination of 

compact and non-compact schemes, or, as we called, uniform weighted compact and non-compact scheme 

(UWCNC), or XJL scheme for simplicity. 

1.2 Importance of high order scheme to DNS/LES 

It should be pointed out that the order of accuracy of the finite difference scheme is absolutely not a trivial issue 

to CFD, especially to DNS and LES. There is a big difference in requirements of grid size by DNS/LES between 

low order schemes and high order schemes. Let us take a look at the local truncation error for 1-D problem. If one 

uses a second order scheme with a mesh size of 2x∆ and wants to have same truncation error as a sixth order 

scheme with a mesh size of 6x∆ , one should have:  

 
6

66

2

22 )()( xCxC ∆=∆   (1.1) 

Assume 62 CC ≈ and 01.06 =∆x (100 grid points in a normalized domain), we will get 
622

2 )10()( −=∆x  

 
6

2 10−=∆x   (1.2)  

In other words, the second order scheme needs one million of grid points to beat the sixth order scheme with 100 

grid points for same accuracy. This advantage of high order scheme will become more significant when one uses 

DNS for 3-D problems. We cannot use and do not want to use one million of grids in each direction for DNS, but 

prefer to use 100 grid points. Therefore high order scheme must be used. Of course, the global error does not only 

depend on the local truncation error and 62 CC ≠ . The advantage of the sixth order scheme does not show 10 

thousand times better than the second order scheme. However, it is now widely recognized that high order finite 

scheme is strongly encouraged to be used for DNS and LES which has much higher accuracy and higher resolution 

with same grid size than low order scheme has. 

1.3  Comments on low order LES with low order subgrid models 

Because the main purpose for this work is to find a high order shock capturing scheme for LES of shock-

turbulence interaction, we would like to make some comments on low order LES. Most LES computations require 

use of a subgrid model trying to get the unresolved scales back which could be considered as truncation errors 

mathematically. Let us take a look at the famous Smagorinsky model: 

 

 ijtij Sντ −=     and  

 ||)( 2
SCst ∆=ν  (1.3) 

Where ∆,,, sijij CSτ  are the unresolved stress tensor, resolved strain tensor, Smogorinsky constant, and filter 

width respectively Apparently, it is a second order model with 
2∆ . Other models are similar. If we use sixth order 

compact scheme for LES without model (Implicit LES), we will get sixth order of accuracy. However, if we are 

asked to add the Smgorinsky subgrid model, our LES results will be degenerated to second order of accuracy, which 
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is really bad.  A carefully designed 6th order subgrid model may be needed for high order LES. Therefore, second 

order DNS, second order LES with second order subgrid models are not appropriate for DNS or LES. 

 

Table 1 shows the orders obtained by different orders of schemes, which demonstrates the importance of high 

order numerical schemes for DNS/LES. 

 

Table 1. Orders of DNS/LES approaches 

Scheme Truncation Errors Comments 

Second order DNS )( 2hO  Bad 

Second order LES +Second order 

subgrid model 
)( 2hO  or up Bad 

Sixth order LES without subgrid 

model (ILES) 
)( 6hO  Good 

Sixth order LES with second order 

subgrid model 
)( 2hO  Really bad 

Sixth order LES with sixth order 

subgrid model 
)( 6hO  or up Best 

1.4  New point of view on high order CFD 

The 3-D time dependent Navier-Stokes equations in a general curvilinear coordinate can be written as  
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For 1-D conservation law, it will be: 

 0=
∂
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ξ
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t

Q
 (1.5) 

The critical issue for high order CFD is to find a more accurate approximation of derivatives for a given discrete 

data set. The computer does not know any physical process but a discrete data set. The output is also a discrete data 

set. Therefore, the high order finite difference scheme should be based on the feature of the discrete data set, but not 

the physics, to find a good approximation for derivatives since the computer does not know the physics. We measure 

the data by slopes to determine it is smooth (slope is small), oscillatory (slope is large), and non-differentiable (slope 

is large on one side, but small on the other side), or, in other words, by a smoothness function, and then the 

appropriate numerical scheme is set up based on the feature of the discrete data set, but not the governing systems.  

This is the key issue of our new high order scheme and basic view point of our new scheme development. 

 

People traditionally think to use high order compact scheme for smooth area and low order upwind scheme for 

shocks if they can detect the shock and think the difficulty is to detect shock for complex flow such as 3-D shock-

boundary layer interaction. However, the answer is just the opposite. The easiest thing is to detect shock for complex 

flow by using our slope measurement and smoothness function. We never miss any shock because our scheme is 

based on the analysis of the discrete data set. For the smooth area, both low order and high order schemes can 

achieve satisfying results. We prefer to use high order of course, but it is not critical. The critical is to use high order 

compact scheme with high resolution for oscillatory waves and use the weighted high order central, non-dissipative 
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scheme for shocks. The needed dissipation comes from weights, not from low order upwind scheme. The weights 

provide needed dissipation, but do not reduce the order of the scheme. 

 

To make no confusion, we should address that the physical shock is a discontinuity with two solutions at the 

same grid point, but the best numerical method only can give the shock by two grid points. This tells us that the 

error for the finest grid and the best method is maximum first order. However, we believe we should use the fine 

grid solution as our reference solution which can never be the exact solution for shocks no matter how many grids to 

be used. However, it does not prohibit us from developing high order scheme for the shock-turbulence interaction 

and the high order of the local truncation error (not the global error) is critical to the simulation of flow transition 

and turbulence. 

II. Numerical Scheme 

2.1  ENO reconstruction function 
For 1-D conservation laws: 

 0)),((),( =+ txuftxu xt  (2.1) 

When a conservative approximation to the spatial derivative is applied, a semi-discrete conservative form of the 

equation (2.1) is described as follows: 
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is the flux defined by the above integration which is an exact expression and is different from f. 

Let H be the primitive function of
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H is easy to be calculated, but is a discrete data set. 

The numerical flux f̂  at the cell interfaces is the derivative of its primitive function H. i.e.:  

 
'

)2/1()2/1(
ˆ

++ = jj Hf  (2.4) 

All formulae given above are exact without approximations. However, the primitive function H is a discrete data 

set or discrete function and we have to use numerical method to get the derivatives, which will introduce numerical 

errors, or, in other words, order of accuracy. 

 

This procedure,
'ˆ

xffHf →→→ , is called reconstruction introduced by Shu & Osher (1988, 1989). There 

is one and only one problem left for numerical methods, which is how to solve (2.4) or how to get accurate 

derivatives for a data set. 

 

2.2  Data normalization and smoothness 
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2.2.1 Data normalization 

In order to find universal formula, we need to normalize the data set, u(i), i=1, n: 

 || minmax uuudiff −=  (2.5) 

 diffuuuu /)( min−=  (2.6) 

Here, maxu and minu are the maximum and minimum values of u respectively and u is normalized. For 

simplicity, we throw out the hat of u and use u(i) as the normalized data set. 

2.2.2 Four measurements of smoothness  

Similar to WENO, we define smoothness for each data point. 

 

For a given point j, three candidate stencils containing this point are defined as follows (Figure2.1): 

 ),,(),,,(),,,( 212111120 +++−−− === jjjjjjjjj xxxSxxxSxxxS  (2.7) 

 

 

Figure 2.1 Candidate stencils for an interior point j 

 
The smoothness of each point is described by four measurements: 
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The first three are similar to WENO smoothness with some modifications. The modification is made to the first 

one and third one by using a second order central difference to replace the second order one side finite difference for 

the first order derivatives. The first three smoothness measurements are really a combination of first order 

derivatives and second order derivatives, or slope and curvature in other words, for the left hand side, central, and 

S0 

S1 

         j-2      j-1       j       j+1     j+2 

S2 



 

American Institute of Aeronautics and Astronautics 

 

7 

right hand side. These measurements will be used to construct XJL weights. We add the fourth measurement called 

the average smoothness, which could be used to distinguish the smooth (low frequency) waves and oscillatory (high 

frequency) waves. Note that WENO uses weights to detect shocks which has large derivative on one side but small 

derivative on the other side, but has no tools to differ the high frequency and low frequency waves as well as strong 

and weak shocks. We add the fourth measurement to achieve the above purpose to distinguish the high and low 

frequency waves as well as strong and weak shocks.     

2.2.3 Three regions of data set  
A data set is a group of numbers like grid function in CFD. A data set can be divided to three subset or three 

regions: smooth, oscillatory, and non-differentiable. A smooth subset could be described as low frequency waves, 

2/,0),( maxKkkxSin = . An oscillatory subset could be   maximum frequency of the resolved waves. The third 

subset can be distinguished by high smoothness on one side and low smoothness on the other side, or recognized by 

weights. 

 
For the low frequency waves, any second order or higher order finite difference schemes are applausive. Of 

course, we prefer to use high order compact scheme. For the high frequency waves, the use of non-dissipative 

scheme is critical. Therefore, use of non-dissipative, high order, high resolution compact scheme is critical to the 

success of numerical methods. The 5th order WENO scheme has 5th order dissipation and will give a significant 

damp to the high frequency waves which is the reason why some people complain WENO is too dissipative to 

shock-turbulence interaction. Instead, we use weighted scheme, which is compact for smooth and oscillatory regions 

and non compact cross the shock or discontinuous regions. The approach looks like complicated, but is really very 

simple. The scheme has a uniform form which automatically switched by one control function, α . It is critical to 

use non-dissipative scheme everywhere, the weighted non-compact cross shock and weighted compact anywhere 

else. The dissipation is only introduced by weights.  

2.3  Weighted compact scheme 

2.3.1 High-order compact schemes 

    A Pade-type compact scheme could be constructed based on the Hermite interpolation where both function 

and derivatives at grid points are involved, e.g. a fourth order finite difference scheme can be constructed if both the 

function and first order derivative are used at three grid points. For a function f we may write a compact scheme by 

using five grid points (Lele, 1992): 

 

 ξβααβ ∆++++=++++ ++++−−−−++++−−−− /)( 2112
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2 jjjjjjjjjj fbfacffafbfffff  (2.9)                                                                                                                                                                                                                             

We can get 8th order of accuracy by using the above formula based on Taylor series.  

 

Here, we use a symmetric and tri-diagonal system, by setting 0== +− ββ , to get a one parameter family of 

compact scheme (Lele, 1992): 

 ( ) ( ) ( ) ( ) hfffffff ijjii ii
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1
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1
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'''

11 





−++++−−−=++ ++−−+−

αααααα  (2.10) 

If 3
1=α , we will get a standard sixth order compact scheme. But if 0=α , we will get a fourth order non-

compact central scheme. Note that both schemes are non-dissipative. The dissipative is added by weights. 

  

When a compact scheme is used to differentiate a discontinuous or shock function, the computed derivative has 

grid to grid oscillations. In our previous work (Jiang et al, 2001) we proposed a new class of finite difference 

scheme - weighted compact scheme (WCS).  
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2.3.2 Basic formulations of weighted compact scheme 

For a given point j, three candidate stencils containing this point are defined as follows (Figure2.2): 

),,(),,,(),,,( 212111120 +++−−− === jjjjjjjjj xxxSxxxSxxxS
 

 

Figure 2.2 Candidate stencils for an interior point j 

 
The schemes for the three candidate stencils are obtained by applying equation (2.9) to each of these stencils and 

are given by equation (2.11).  
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where h is the mesh size. The schemes corresponding to stencils S0 and S2 are third order one-sided finite difference 

schemes, and the scheme corresponding to S1 is a fourth order centered scheme. These three equations are denoted 

by F0, F1 and F2. Then a specific weight is assigned to each equation, and a new scheme is obtained by a 

summation of the equations. 

 221100 FCFCFCF ++=  (2.12)  

where 0C , 1C and 2C  are weights and satisfy .1210 =++ CCC   If the coefficients are chosen as 
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8
,
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1
120 === CCC  (2.13) 

The new scheme is a sixth order centered compact scheme and is given by: 
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The procedure described above implies that a sixth order centered compact scheme can be constructed by a 

combination of three lower order schemes. In order to achieve the non-oscillatory property, the WENO weights 

(Jiang et al., 1996) are introduced to determine new weights for each stencil. The weights are determined according 

to the smoothness of the function on each stencil. Following the WENO method, the new weights are defined as 

S0 

S1 

         j-2      j-1       j       j+1     j+2 

S2 
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where ε  is a small positive number which is used to prevent the denominator becoming zero and p is a 

parameter to control the weighting. Actually, p is very sensitive to affect the weights. We set p as a function of 

smoothness instead of constant. When p=0, the 6th order standard compact scheme is recovered.  ISk is a smoothness 

measurement which is defined in 2.2.2. 

Through the Taylor expansion, it can be easily proved that in smooth regions the new weights kω  satisfy: 

 )( 2
hOCkk +=ω and 

 )( 3

02 hO=−ωω  (2.16) 

The new scheme is formed using these new weights: 

 221100 FFFF ωωω ++=  (2.17) 

The leading error of F is a combination of the leading errors of the original schemes, which is: 
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When equation (2.16) is satisfied, the leading error of the new scheme can be written as )( 6hO and the new 

scheme still keeps its 6th order.  

2.3.3 Weighted compact and non-compact schemes 

Now, we try to use one parameterα -family of the compact scheme. On each stencil, a compact difference 

scheme is derived as follows by matching the coefficients in Taylor series to obtain corresponding orders.  
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The linear weight for each stencil is C0, C1, C2, respectively. Then we have 16 unknowns, 
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For each stencil, a compact scheme of lower order is established. By matching the coefficients in Taylor’s series, 

we have the following conditions: 
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In order to reassemble the standard compact scheme in equation (2.10), we have the following conditions: 

ααα =+ −−
1100 CC ,  1210 =++ CCC ,  ααα =+ ++

2211 CC ,  )14(
12

1
00 −−=− αbC , 
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1
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1
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  (2.21) 

whereα is treated as a parameter.  

All these nonlinear equations above are not independent of each other. Therefore, the system is not closed for 16 

unknowns. We can add an artificial condition to close the system. Note that this is a non-linear system. Let us try to 

use 
4

3
1

α
α =+

 artificially. We have a closed system with the following solution listed in Table 1. 

Table 1. Coefficients for the compact scheme on each stencil S0, S1, S2 (
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where every coefficient varies smoothly and monotonically whenα varies from 0 to 1/3. Therefore, the scheme 

is formulated as follows,  
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For candidates S0 and S2, the function values at three grid points and first derivative at one grid point are used to 

calculate jf ' . Thus the scheme is at least second-order accurate (third-order if =α 1/3) and one sided. For 
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candidate S1, the function values at two grid points and first derivative at two grid points are used to calculate jf ' . 

Thus the scheme is at least second-order accurate (fourth-order if =α 1/3) and centered. Then a specific weight is 

assigned to each equation, and a new scheme is obtained by a summation of the equations. 

 221100 FCFCFCF ++=  (2.23) 

where 1210 =++ CCC . By choosing the weights in table 1, the scheme reproduces the standard compact 

scheme: 

 iiiiiiii hfffffff ταααααα +
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1
)2(
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1
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''' 211211 (2.24) 

 

which has sixth-order of accuracy if we pick =α 1/3, but fourth-order if we pick 3/1≠α .  

As we discussed in section 2.3.2, we use WENO weights, 210 ,, ωωω  instead of 210 ,, CCC . 

Following the WENO method, the weights are defined as: 
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where ε  is a small number to prevent the denominator becoming zero. p is an important parameter to control 

weights. ISk is the smoothness measurements which are defined in section 2.2.2. 

 

The final scheme is 221100 FFFF ωωω ++= : 
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 (2.25) 

Note that there is only one parameter α  which has not been determined yet. 

2.3.4 Determination of parameter α  
Apparently, determination of α becomes the central stage of our research. Instead of using fixed α , we 

determine the value of α according to the smoothness of the function. All the other coefficients become the 

functions of α . In this work, we first define α as  
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 (2.26)                      



 

American Institute of Aeronautics and Astronautics 

 

12 

where 

∑ =
+

+
=

2

0
)(

i k

k
k

IS

IS
IS

ε

ε
, 

ε is a small positive number. In smooth regions, the three normalized smoothness are nearly equal, namely, 

3

1
210 === ISISIS . Thenα equals to 1/3 and the 6th order standard compact scheme recovered. We achieve 

global dependency and the best resolution. In shock regions, for instance, the worst case gives us dramatically 

different weights. After normalization we have 0,1 210 === ISISIS . Then 0=α and we achieve the local 

dependency and non-oscillatory property from the weighting procedure.  

 

However, these kinds of WENO weights based on differences of left hand side, central, right hand side 

smoothness would not distinguish the low and high frequency waves and will give same α for both low frequency 

and high frequency waves. It may mislead to give 3/1=α for center point of the shock if we capture the shock 

with more than three grid points. Apparently, we need to consider the fourth measurement of the smoothness, 

aveIS
which is high for high frequency and low for low frequency. In this work, we define α  in the following way: 

 }
3

1
,*)*1({min 21 aISa avefinal −= αα  (2.27) 

We also define a function called smoothness which will control the compact and non-compact switch and 

everything: 

 

Smoothness=1.0-3.0*α  or α =(1.0-smoothness)/3.0 

 

When smoothness=1.0 where is non-differentiable, α =0.0 and non-compact scheme will be used. When 

smoothness=0.0, α =1/3 and the standard 6th order compact scheme will be recovered. 

 

2.4  Recovery to 8th order in smooth areas 
In smooth area, the scheme will become a standard 6th order compact scheme and keep 6th order in accuracy: 
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h

fff  (2.28) 

Using 5 grid points, we can also get an 8th order scheme by following scheme: 
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Subtracting (2.29) by (2.28), we get the residual: 
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The final finite difference scheme can be written as 

 33221100 FFFFF ωωωω +++=  (2.31) 
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Where  

 Smoothness−== 0.1*0.33 αω  (2.32)   

which is 1 in the smooth area and becomes zero near the shock or other discontinuities. In this way, the accuracy 

will be recovered to 8th order by 5-point stencil in the smooth area. Of course, a penta-diagonal system has to be 

solved on each grid line.  

 
The above derivation is based on the six order compact scheme: 

 )( 6

2211006 hOFFFF +++= ωωω  (2.33) 

In order to get 8th order accuracy in the smooth area, we can use: 

 
8

83

6

63832211003 )1(])[1( hkhkFFFFF ωωωωωωω +−++++−=  (2.34) 

where 8F  is a standard 8th order compact scheme with 5 grid points. In the smooth area, 0.13 =ω , we obtain 

8th order of accuracy. 

Here, we use the 6th order WCS as our base scheme. However, this method is universal and we can use for any 

base scheme. For example, we can use 5th order WENO as our base scheme or use the uniform compact and non-

compact scheme (UCNC) as our base scheme. The basic idea is to get 8th order of accuracy recovered in the smooth 

area, but bias near the shock to avoid numerical oscillations. 

 

The remained question is how to detect shock correctly and accurately and then chose a right switch function or 

sharply weighted function, 3ω , based on the smoothness, which has been discussed much by above sections. 

2.5  Comments on the new scheme: 

It is very natural for one to have an idea to use high order compact scheme for smooth area and low order 

upwind scheme for shocks. However, it is not true. For the smooth area, both low order and high order schemes can 

achieve satisfying results. We prefer to use high order of course, but it is not critical. The critical is to use high order 

compact scheme with high resolution for oscillatory waves and use the weighted high order central, non-dissipative 

scheme for shocks. The needed dissipation comes from weights, not from low order upwind scheme. The weights 

provide needed dissipation, but do not reduce the order of the scheme. 

 

There is only one major problem for numerical methods: how to get the derivative more accurately for a discrete 

data set which could be partially smooth (derivative is small), partially oscillatory (derivative is large), and partially 

non-differentiable (finite difference on left hand side, central, right hand side, or
−+ δδδ ,, , are quite different). 

The new scheme tries to give a right and accurate approximation of derivative for a data set by using compact 

scheme in the smooth area, weighted compact scheme in the oscillatory area, and weighted non-compact scheme 

cross the shock. All controlled by the so called “smoothness” 

 

The new scheme is a subroutine which can be used in any finite difference CFD code to find right derivatives. 

 

The new scheme is applicable to 2-D or 3-D problems by calling a subroutine for twice or three times. However, 

there is a boundary condition issue for 2-D and 3-D problems.   

 

III. Numerical Test and Analysis  

 
Throughout this report the 3-tep, 3rd order TVD Runge-Kutta method is applied for time discretization. 
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3.1  Order of Accuracy 

The scheme is tested by solving a linear wave equation with a smooth initial function: 

 0=+ xt uu , ( ) )2sin(0, xxu π=  where 10 ≤≤ x  (3.1) 

The calculation stops at 3.0=t  and the errors are listed in table 2. The computation shows the 6the order 

accuracy is achieved. 

 

Table 2. Errors and Order of Accuracy 

N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order 

8 1.06E-02 - 3.67E-03 - 2.05E-02 - 

16 8.66E-05 6.93 2.46E-05 7.22 2.00E-04 6.68 

32 1.37E-06 5.98 2.94E-07 6.39 4.37E-06 5.51 

64 2.23E-08 5.93 3.74E-09 6.30 1.11E-07 5.30 

128 3.45E-10 6.01 4.95E-11 6.24 2.86E-09 5.27 

256 4.49E-12 6.26 5.73E-13 6.43 5.98E-11 5.58 

 

3.2  Comparison of dissipation for 1-D linear wave equation 

The same governing equation is solved and high frequency initial condition is applied in order to test the 

numerical dissipation of different schemes. 

 0=+ xt uu , ( ) )20sin(0, xxu π=  where 10 ≤≤ x  (3.2) 

The solutions at t=1.0 are put together in figure 3.1. The results show that standard 6th order compact scheme 

has the least numerical dissipation which should be zero theoretically. UWCNC scheme also has very small 

dissipation while WENO-5 scheme has dramatically smeared the high frequency solution. 

 

x

u
(x

)

0 0.25 0.5 0.75 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Compact 6

UWCNC 6
WENO 5
Exact

 

Figure 3.1  Numerical test over linear wave equation. 
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3.3  1-D linear wave equation with jump initial function 

The same governing equation is used but the initial condition is discontinuous: 

 0=+ xt uu ,   ( )


 ≤≤

=
otherwise

xif
xu

5.0

4.01.00.1
0,  (3.3) 

The calculation stops at 3.0=t  and the solutions are illustrated in figure 3.2. The results indicate that standard 

compact scheme doesn’t work for shocks while both XJL (with variableα ) presented in this report and WENO 

scheme work. Furthermore, XJL-6 has less dissipation than WENO-5 near shocks which means a sharper transition 

is obtained. 
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Figure 3.2 Numerical test over linear wave equation. 

3.4  1-D Shock Tube Problem 
To test the capability of the new scheme in shock capturing, we applied it to the 1-D shock tube problem. The 

governing equations are 1D Euler equations: 

 0=
∂

∂
+

∂

∂

x

F

t

U
 (3.4) 

 ( )T
EuU ,, ρρ= ;  ( )( )T

pEupuF ++= ,, ρρ  

The initial conditions are given as follows: 

 ( )
( )
( )



≥

<
=

.01.0,0,125.0

;0,1,0,1
,,

x

x
puρ  (3.5) 

To solve the Euler equations, Steger-Warming flux vector splitting is used and the derivatives of splitting flux 
+F ,

−F  are calculated using our new scheme. In this case, α  is defined as in Equation 2.27. The distributions of 

velocity u and pressure are shown in figure3.3. Comparisons are also made with the solutions obtained using 5th 

order WENO scheme. From figure 3.3, it can be found the XJL scheme captured the shock sharper and smeared the 

expansion wave and shock less then the 5th order WENO. Figure 3.4 shows a locally enlarged comparison between 

XJL, WENO, and WENO with 1600 grid points which we consider as an exact solution. Figure 3.4 show the 
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smoothness measured by our definition which is the only parameter to control the compact and non-compact scheme 

switch. The figure shows the shock is well captured with smoothness=1.0 ( 0=α ) and the smoothness measured on 

the coarser grid (N=100) and finer grid (N=200) are pretty consistent.  

 

 
 

 
 

Figure 3.3 Numerical test for 1D shock-tube problem, t=2, N=100 and 200 
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Figure 3.4  Smoothness for 1D shock-tube problem, t=2, N=100 and 200 

3.5  1-D Shock/Entropy Wave Interaction 

 
To test the capability of the new scheme in both shock capturing and resolution, we applied it to the 1-D problem 

of shock/entropy wave interaction. In this case, Euler equations (3.3) are solved with the following initial conditions: 

 ( )
( )
( )



−≥+

−<
=

.41,0),5sin(2.01

;4,33333.10,629369.2,857143.3
,,

0
xx

x
puρ  (3.6) 

α is calculated using (2.27).  Figure 3.5 and 3.6 depict the solutions of the density distribution on the coarser 

and finer grids respectively. On the coarser grid with grid number of N=200, our new scheme shows much better 

resolution for small length scales than the 5th order WENO (Figure 3.5 (a), (b), (c)). Apparently, there is an order 

difference in resolution between our 6th order XJL scheme and the 5th order scheme. This is because XJL uses 

central, non-dissipative, compact scheme with weights in the shock area and recovers high order compact away from 
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the shock. The numerical results by our XJL scheme with 200 grid points are even comparable with the 5th order 

WENO scheme with 1600 grid points (Figure 3.5 (d) and (e)). On the finer grid (N=400), both the 6th order XJL and 

5th order WENO schemes show a good resolution (Figure 3.6 (a), (b), and (c)). However, we can still find our 6th 

order XJL scheme has a much better resolution for the fifth wave left from the shock (Figure 3.6(d)). In addition, the 

XJL captures the shock in a much sharper way for all shocks. On the shocks developed by the sinuous waves, only 

one grid point was found on the shock (Figure 3.5 (d) and 3.6(a)). Again, Figure 3.7 shows the smoothness 

measured by our definition which is the only parameter to control the compact and non-compact scheme switch. The 

figure shows the main shock is well captured with smoothness=1.0 ( 0=α ) and the shocks developed by the sine 

function are also well captured. The smoothness measured on the coarser grid (N=200 and 400) and finer grid 

(N=1600) are quite consistent. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 3.5 Numerical test for 1D shock-entropy wave interaction problem, t=1.8, N=200 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3.6 Numerical test for 1D shock-entropy wave interaction problem, t=1.8, N=400 

 

 

 

   

Figure 3.7  Smoothness for 1D shock-entropy problem, t=2, N=200, 400, 1600 

  

IV. Questions and answers about the new work 

In order to make the things more clear, we write flowing questions and answers: 

 

Q: What is the most critical problem for CFD? 

A: The critical problem is to give an accurate approximation of derivatives for a discrete data set which is 

partially smooth, partially oscillatory, and partially non-differentiable. 

Q: How to measure? 

A: Use slope. The smooth part has small slope, the oscillatory part has large slope, and the non-differentiable 

part has one large slope on one side, but small slope on the other side. They can be detected by our smoothness 

function α . We never missed them. 

Q: What are you doing now? 

A: We try to develop a new scheme which is super than other numerical scheme in capturing shock and 

resolving small high frequency length scales. Actually, it is a subroutine which has a discrete data set as input and 

gives an accurate derivative data set  as output. This subroutine can be added to any finite difference code by AFRL 

researchers or other people. 
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Q: People think we can detect the shock and then use upwind scheme for shock and high order scheme for the 

smooth part. Is it right? 

A: It looks like a good idea, but, unfortunately, it does not work. Both low order and high order schemes can 

provide satisfying results for the smooth problem. Although we prefer to use high order compact scheme for the 

smooth solution, it is not critical. 

Q: What is critical? 

A: The critical thing is to use high order compact scheme for the oscillatory part to get high order accuracy and 

high resolution. This is the key issue for the success of the numerical simulation. 

Q: How about shock? Should we use low order upwind scheme to capture the shock? 

A: No, we should use high order, central, non-dissipative scheme to capture the shock sharply. 

Q: How to get dissipation to remove the wiggles near the shock ? 

A: We use the weights. The weights can generate the dissipation. 

Q: What is the difference between using weights and artificial dissipations? 

A: The upwind scheme or artificial viscosity will reduce the order of the finite difference scheme, but the 

weights will keep the high order accuracy, but provide necessary dissipation for the non-differentiable part. 

Q: Why does your weighted compact scheme has wiggles around the shock? 

 A: No matter how small the weights are for the downstream candidate, the matrix has global dependence. 

Q: How to solve the problem? 

A: We use the weighted central non-compact scheme, which will decouple the matrix and remove the global 

dependency. 

Q: How to control? 

A: We use the one parameter family of compact scheme. When 3/1=α , we will have the standard 6th order 

weighted compact scheme. When 3/1≠α , the scheme will become 4th order. When 0=α the scheme will 

become a 4th order standard weighted non-compact scheme. The global dependency will be removed and no-

oscillation will be generated around the shock. 

Q: How to control? 

A: This is a uniform scheme with one parameter only. α is a function of smoothness. It will be 1/3 in the smooth 

area and gradually becomes zero when approaching the shock. 

Q: How good is the scheme? 

A: The new scheme can capture the shock sharper than the 5th order WENO and the resolution for high 

frequencies is one order higher than the 5th order WENO for the shock-entropy interaction problem. 

Q: Is it case related? 

A: No, there are no case-related coefficients. It in general does not need any low order filter at all. 

Q: Can the subroutine be used any finite difference CFD code? 

A: Yes. Anyone and any code. We only give a right derivative for a given discrete data set. 

Q: Can the scheme be used for 2-D and 3-D problems? 

A: Yes, you can call the subroutine for each direction. However, we need to develop high order compatable 

scheme for boundary points and need more work on 2-D and 3-D problems.  

 

V. Concluding remarks 

The new uniform weighted compact and non-compact scheme (UWCNC), or XJL scheme for simplicity, 

introduced in this paper is applicable for the simulation of flows containing both shock waves and small structures 

which is particularly important for shock-turbulence interaction. The scheme is constructed according to the feature 

of the input discrete data set but not the physics and, therefore, can be used anywhere or any computation program 

as a subroutine to find right derivatives. The advantage is that the scheme keeps the form of standard central 

compact scheme in smooth regions, while degenerates to weighted non-compact scheme near a shock to preserve a 

sharp and almost monotonic transition. This goal is achieved by using the same formulation without switching to a 

different scheme or using a low order filter. The new scheme does not have any case-related coefficients either. The 

numerical test shows the new scheme captures the shock sharper (almost one grid point) than the 5th order WENO 

scheme and has much better capability to resolve the small length scales than the 5th order WENO scheme for the 

shock-entropy interaction. The further application of this scheme to the simulations of shock/vortex interaction or 

shock/turbulence interaction appears to be promising. 
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