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Abstract. In this note, we study the change of collective behavior of two
synaptically coupled bursting systems as the strength of coupling increases.
The two cells present chaotic bursting behavior when uncoupled. But as the
strength increases past a certain value, the behavior of two cells becomes syn-
chronized regular bursting motions. It shows that regular oscillations can
emerge from connecting intrinsically chaotic oscillators with synapses. The
method of analysis is similar to that of Fast Threshold Modulation theory.

1. Introduction. We consider a system of two synaptically coupled Hodgkin-
Huxley type neurons and we intend to study its dynamical behavior. The system
models the collective behavior of two neuron cells coupled through synapses whose
actions are due to release of neural transmitters. Quantitatively, the synapse can
be approximated by a Heaviside function. Individual cell here presents a chaotic
dynamics and has solutions with distinct patterns appear in two time scales, called
bursting. The bursting solutions are characterized by an alternating sequence of a
chain of intensive large amplitude oscillations in the active phase and then a quite
rebound period without oscillation in the inactive phase. In this note, each of the
systems is assumed to be identical to other, and individually it presents the typical
square bursting as described by Rinzel [7], Terman [14] and Sherman and Rinzel
[12]. It was known [14] that at certain parameter range, some chaotic characters
of solutions occur. However when two identical chaotic systems are coupled to-
gether, there are many possibilities. They could either synchronize into an in-phase
solution or a out-of phase solution, or neither, depending on the parameter range
and the method of coupling. For example, Sherman and Rinzel [12] showed two
neurons with diffusive coupling (gap junction in neuroscience terms) may have a
much longer active phase of high frequency oscillations than a single neuron of the
same property. There are intensive studies of diffusively coupled regular or chaotic
neurons, available in the literature but they are out of the scope of our study. The
mathematical study of synaptically coupled cells started from the Fast Threshold

2000 Mathematics Subject Classification. 34C28,92C20.
Key words and phrases. Coupled Oscillators, Chaotic behavior, Synchronization.

1



2 J. SU, H. PEREZ AND M. HE

Modulation Theory, initiated by Somers and Kopell [13]. Rubin and Terman [8]
had also described in detail how to analyze the synchronization of neurons by a
geometric method for differential equation. Some recent studies can be found in [2]
and [9].

We study a synaptically coupled system of two identical Hodgkin-Huxley type
neurons in this study. When there is no coupling or weak coupling, the systems
appear chaotic and unsynchronized. But when the synaptic coupling strength is
large enough, the systems will be regular and synchronized. The phenomenon was
observed by Abarbanel et al and was confirmed by calculating their Lyaponov ex-
ponents in [1]. Through analyzing its fast and slow manifolds, we provide the
underlining mechanism of this phenomenon from a different perspective. Regular-
izing chaotic cells can also be possible by an averagaed coupling in [10] which is not
related to our study.

We organized the paper in the following way. In Section 2, we start with general
assumptions and discuss the individual behavior of a single system. In Sections 3
and 4, we consider the dynamical behavior of the systems with a coupling that leads
to synchronization. A brief discussion is in Section 5,

2. General Assumptions On Individual Neuron. For simplicity, we assume
that individual neurons are identical in our case. In our model, motivated by
Hodgkin-Huxley equation (or its variation such as FitzHugh-Nagumo model, Hindmarsh-
Rose model) [7], the intracellular membrane potential and currents of the neuron
satisfy the differential equations:

v′ = f1(v, w, y) (1a)

w′ = f2(v, w, y) (1b)

y′ = εg(v, w, y). (1c)

The sub-system containing the first two equations (1a-1b) is called the fast system
(FS). The last equation (1c) is called the slow equation. We assume

(H1) The set of steady states of (FS) consist of an S-shaped curve of y in (v, y)-
plane denoted by S. There exist yλ and yρ such that the number of steady
states of (FS) equals to 1 as y ∈ (−∞, yλ), equals to 3 as y ∈ (yλ, yρ), equals
to 1 as y ∈ (yρ,∞). Denote the right knee (located on the lower branch) by
Pρ = (vρ, wρ, yρ) and left knee on upper branch Pλ = (vλ, wλ, yλ). We also
denote the upper, middle and lower branch of S by U,M,L.

(H2) We further assume that the lower branch L consist of stable steady states
for (FS) and the middle branch consist of steady states which are saddles
for (FS). The upper branch is more complicated than the cases considered
in Terman [14]. For two intervals yb ≤ y < yh and yH < y ≤ yB, there
exist one-parameter families of periodic solutions of FS, denoted by P1 and
P2 respectively. Both P1 and P2 have a Hopf bifurcation point at one end,
and they both terminate at a homoclinic orbit from saddle points at the
middle branch. These homoclinic points are denoted as ph = (vh, wh, yh) and
pH = (vH , wH , yH). See Figure 1. Both P1 and P2 are stable for (FS) with
y-fixed.

(H3) For slow dynamics, the y-dependent nullsurface N ≡ {(v, w, y)|g = 0} inter-
sect the curve S at a unique point below ph and further down M towards
Pρ, and N is quite close to Pρ in distance. As typical, U ⊂ {g < 0},
P1(t) ⊂ {g < 0} and P2(t) ⊂ {g < 0} while L ⊂ {g > 0}. We assure
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Figure 1. The bifurcation diagram of (FS) for Equation 1

the point Pρ is nondegenerate described as follows [5]. Let F = (f1, f2). Then
DFx(Pρ) has one negative eigenvalue and one zero eigenvalue. Further, Let
η, χ be the eigenvectors corresponding to the zero eigenvalue of DxF (Pρ) and
(DxF (Pρ))

T , we have < χ,DxF (Pρ) > 6= 0 and < χ,DxxF (Pρ)(η, η) > 6= 0.
Assumptions on Pλ are similar. Geometrically, it implies that Pρ and Pλ

behave like parabolas. We also assume that there exists a unique stable tra-
jectory rρ such that rρ(t) → Pρ as t → −∞ and rρ(t) → P2(t) as t → ∞ for
(FS). Similar assumption holds for Pλ.

With the assumptions given above, the behavior of a single cell is well understood
by Terman [14] and Lee and Terman [5]. We introduce two basic results.

Theorem 1 (Terman [14] and Lee and Terman [5]). Assume H1-H3 hold for Eq.

1. There exist εi → 0+ as n→ ∞ and δi ≤ Cie
−k/εi , the periodic bursting solution

that alternates between L and P2, is uniquely determined and asymptotically stable

for all ε > 0 except for ε ∈ ∪i(εi − δi, εi + δi).

The bursting solutions mentioned above are regular solutions without chaotic
motions. In cases of our interest, the solutions behave chaotically. In previous study
of Terman [14], the null function g(v, w, y) is linearly depedent on a parameter k,
that is glucose level in pancreatic model. The parameter k can be adjusted such
that when k is small, Eq. 1 gives rise to regular bursting solutions and when k is
above a certain value, Eq. 1 has continuous spikes. In the (ε, k)-plane, there is a
wedge region where the corresponding Poincare Mapping induced by Eq. 1 presents
a Fibonacci dynamics that characterizes the chaotic dynamics.

Theorem 2 (Terman [14]). Assume H1-H3 hold for Eq. 1. The chaotic bursting

solutions exist for all ε > 0 and for k = k(ε). There exist an integer N = N(ε) and

real numbers {kj}, 1 ≤ j ≤ N(ε) with kj ≤ kj+1 such that for k ∈ [k2j , k2j+1] the

return mapping π(k, ε) near the lower branch of the steady state of the fast system

at y = yH gives rise to a j-Fibonacci dynamics.

Several neuron cells have those characters we mentioned above. For example,
Morris-Lecar model [14] and Hindmarsh-Ross model (HR) [1] all satisfy the as-
sumptions mentioned earlier. In this study, we will investigate HR (a prototype
for Hodgkin-Huxley theory) numerically using XPPAUT software to motivate our
study of coupled systems. The biological meaning of the assumptions were carefully
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explained in [14] and [12]. The variable v represents the voltage, the variable w is
recovery variable and y is inward current. The parameter Inj is the injected current
into the neuron:

v′ = w + φ(v) − y + Inj

w′ = ψ(v) − w,

y′ = −ry + rS(v − c)

(2)

where Inj = 3.281, r = 0.0021, c = −1.6, S = 4.0, φ(s) = 3s2 − s3, ψ(s) = 1 − 5s2.
The initial values are set at v = 0, w = 0, y = −2. Figure 2 shows a chaotic bursting
trajectory of Eq. 2.
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Figure 2. A chaotic trajectory of Equation 2

3. Coupled Oscillators. There are a number of ways by which neurons can com-
municate to each other. Two most common mechanism are diffusive coupling (gap
junction) or synaptic coupling through neural transmitters. Roughly speaking, a
diffusive coupling models a direct electric connection through two neurons, and
synaptic coupling describes the connection through release of neural transmitters
when other neurons activate.

Motivated the work of Somers and Kopell [13] and Abarbanel et al[1], we consider
the coupled systems:

v′1 = f1(v1, w1, y1) + α(−v1 − Vc)H(Xc + v2)

w′
1 = f2(v1, w1, y1)

y′1 = εg(v1, w1, y1)

v′2 = f1(v2, w2, y2) + α(−v2 − Vc)H(Xc + v1)

w′
2 = f2(v2, w2, y2)

y′2 = εg(v2, w2, y2).

(3)

We denote U1 = (v1, w1, y1), and U2 = (v2, w2, y2). The constant parameter α > 0
represents the strength of the coupling. Reminding that L is the lower branch of the
single cell. For U1 ∈ L,U2 ∈ L, we have (−v1−Vc) > 0, (−v2−Vc) > 0 and therefore
the couplings are excitatory [13]. The function H(·) is the Heaviside Function and
(−Xc) is the threshold. Although the discontinuous Heaviside Function is used,
systems with smoothed version of H yield to similar results.
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We study first the numerical solutions of the coupled HR model

v′ = w + φ(v) − y + Inj − α(v + 1.4)H(V + 0.85)

w′ = ψ(v) − w

y′ = −ry + rS(v − c)

V ′ = W + φ(V ) − Y + Inj − α(V + 1.4)H(v + 0.85)

W ′ = ψ(V ) −W

Y ′ = −rY + rS(V − c)

(4)

where all conditions in Eq. 2 hold and initial conditionsV = 0,W = 0.2, Y = −3.02.
The coupling strength α is set at 0.2. We find that the solutions will quickly
synchronize into a bursting solution that is regular and attracting, as shown in
Figure 3. The simulations for Eq. 4 suggested that the behavior of solutions, with
a strong coupling α > α0, will result in regular periodical bursting, and solutions of
different initial positions will synchronize as t goes to infinity. We denote the family

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

V

1000 1200 1400 1600 1800 2000 2200
t 

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

V

1000 1200 1400 1600 1800 2000 2200
t 

Figure 3. The solutions quickly converge to a periodic regular
bursting solution

of solutions Sα(y) to be the steady states of (FS) for the synchronized system Eq.
3

v′ = f1(v, w, y) − α(v +Xc)

w′ = f2(v, w, y)

y′ = εg(v, w, y).

(5)

The numerical calculation of the bifurcation for (FS) of Eq. 5 indicated that
when α > α−

0 , the family of periodic solutions P1 and P2 will be detached from the
middle branch and will merge into one continuous branch Pα. The periodic family
Pα will start from one Hopf bifurcation and terminate at another Hopf-bifurcation
at its upper branch at y = yb and at y = yB, as shown in Graph 4.

We denote the upper branch of the new bifurcation diagram Uα and the lower
branch Lα. We now have our final two assumptions.

(H4) Suppose that there exists a unique value α0 such that as α → α−
0 , both yh

and yH collapse to each other. If α > α0, then the family of periodic solution
Pα will be separated from the middle branch.
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Figure 4. The bifurcation diagram of (FS) for Equation 5 for the
particular example of (HR), α = 0.2

(H5) The coupling strength α is chosen so that the left knee Pα
λ is between the

gap of P1 and P2 i.e., yh < yα
λ < yH . This restricts the value α of coupling

strength.

4. Synchronization To Regular Bursting Solutions. We denote F to be the
union of all fast manifolds from L to U or P2, and from U or P2 to L for Eq. 2.
Similarly, let Fα be the union of all fast manifolds from Lα to Uα or Pα, and from
Uα or Pα to Lα for Eq. 5.

Theorem 3 (Main Result). Suppose H1-H5 hold. There exists a periodic solution

U(t, ε, α) with period T (ε, α) for Eq. 3 such that

(1) dist(U(t, ε, α), L∪F ∪Pα∪Uα∪Fα) = O(ε), and limε→0 T (ε, α) = T0(α) > 0.
(2) there exits δ > 0 such that when any pair of coupled bursting solutions (vi, wi, yi),

i = 1, 2 with initial conditions satisfying |(v1, w1, y1) − (v2, w2, y2)| ≤ δ,
|(vi, wi, yi)(t) − U(t + t0, ε, α)| ≤ M0e

−c0t for some t0, i = 1, 2, i.e. both

bursting solutions synchronize to the periodic solution U(t, ε, α) with a time

shift.

An Outline of Proof for Theorem 3. Analyzing the solutions, we note that the slow
manifold L is stable with respect to (FS). Namely, The linearized operator of (FS)
near L has two negative real eigenvalues except near the right knee for Eq. 1.
For yα

b ≤ y ≤ yα
B, the branch Uα(y) is circled by Pα(y) from outside. Along both

sections of Uα(y) to the left and to the right of Pα(y), the operator from (FS) of Eq.
5 has a pair of complex eigenvalues of negative real parts, except for the left knee
Pα

λ . For the periodic branch Pα, the Floquet multiplier are 1 and µ, |µ| < 1. We use
the classical results from Fenichel [4] to assert the existence of invariant manifolds
of Eq. 5 near the slow manifold and only analyze the flows within the neighborhood
of the invariant manifolds L,Uα and Pα. Note that the solutions follow L rather
than Lα because H ≡ 0 when both cells are in lower branch.

We start both solutions of Eq. 3 at different initial points at the lower branch
L. Without loss of generality, let U1(t)|t=0 be at the right knee Pρ and y1(t) −
y2(t)|t=0 = z > O(

√
ε), z = O(α) is independent of ε. Further y2(t)|t=0 is to the

right of Pα
ρ , the right knee of the bifurcation diagram in Eq. 5 with α > 0. Because

this is a restrictive condition on the initial position difference, our result is a local
synchronization.

MathDept
Note
Cancelled set by MathDept
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Since the nature of the coupling there is excitatory, in the terminology of Somers
et al [13], both trajectories will move up to the periodic family Pα through the
following sequence of events.

(a) For 0 ≡ t1 ≤ t ≤ t2(ε) = t1 + O( 1√
ε
), U1(t) ∈ N(F ) i.e., within the ε-

neighborhood of L and v1 ≤ (−Xc) while U2(t) ∈ N(L), i.e. the solution
U1 leaves the right knee and moves up along the fast manifold F (discussed
earlier, and also see [6] ) but it is still below the threshold (−Xc) to influence
the second neuron; the second solution U2 remains the lower branch for the
time being.

(b) For t2 ≤ t ≤ t3(ε) = t2 + O( 1√
ε
), U1(t) ∈ N(F ∪ P2) and v1(t) > −Xc, while

U2(t) ∈ N(F ) but v2(t) < −Xc below the threshold i.e., the solution U1 goes
past the threshold and eventually reaches P2 the family of periodic solutions
on the upper branch of unexcited equation. The second solution U2 leaves
from the lower branch to move up to the fast manifold F , because U2 gets
excited after U1 goes above the threshold.

(c) For t3 ≤ t ≤ t4(ε) ≤ t3 + O(1), while U2(t) ∈ N(F ) and v2(t) > −Xc is
above the threshold, U1(t) jumps away from N(P2) and goes to N(Pα), the
new periodic family of the synchronized system.

(d) For t4 ≤ t ≤ t5(ε) ≤ t4+O(1), U1(t) stays within N(Pα), while U2(t) ∈ N(Fα)
and U2(t5) ∈ N(Pα) i.e., the solution U2 jumps to the family of periodic
solutions on the upper branch of excited equation.

(e) Finally as t > t5, both U1(t) and U2(t) settle on Pα, then |y1(t5) − y2(t5)| =
z +O(

√
ε). Note U1(t) and U2(t) can switch positions during the jump [13].

We remark that when the solutions move along the slow manifolds L, Pα, Uα, the
time difference between the solutions is invariant, because the systems are decoupled
and the two neurons are identical systems. However the time difference between
U1 and U2 has certainly changed substantially during the jump up and jump down
between slow manifolds via a fast manifold F , even though the phase difference in
y-value remain invariant (up to a precision of O(

√
ε)). We now calculate the time

difference by tracking the dynamics on slow manifolds (the lower branch, the upper
branch as well as the periodic family).

For the lower branch, the slow dynamics satisfies the equation:

(v, w)(y) = L(y),

y′ = εg(L(y), y),
(6)

the time difference in the lower branch is ∆T =
∫ yρ

yρ−z
1

εg(L(y),y) d y where yρ is the

parameter value for the right knee. Then on the slow manifold along the periodic
family Pα, around the upper branch of the excited equations, we use averaging
method [11] to get the slow dynamics for y:

(v, w)(y) =Pα(t, y)

y′ =εg(P̄α(y), y) + O(ε2), (7)

where the average motion P̄α(y) = 1
π(y)

∫ π(y)

0
Pα(t, y) d t is the averaged over the

period π(y). Then the time difference on the periodic branch can also be similarly

determined as ∆T ′ =
∫ yρ−z

yρ

1
εg(P̄α(y),y)

d y.

We now consider that both U1 and U2 move along Pα while maintaining time
difference invariant and eventually enter Uα, the upper branch to the left of Hopf
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bifurcation point. They will come near the left knee point Pα
λ . Either U1 or U2

will lead to the way as they go through the left knee and eventually jump down
to the lower branch L in a similar scenario as in the jumping-ups of U1 and U2.
The reason of jumping downs, however, is different. The couplings there are not
excitatory. When one falls below −Xc, the other one is near the left knee of Uα

and now follows Fα and then F . Because of H3 and H5, both U1 and U2 will move
down to the only stable steady state L.

Similarly, we can calculate from the invariant time difference ∆T ′′ = ∆T ′ when
traveling along the upper branch Uα to obtain a horizontal phase difference z̃ at the
left knee. Also, ∆T ′′′, the time difference traveling along the lower branch L can
be calculated from the horizontal phase difference z̃, becasue the phase difference
is invariant during jumping down.

Now, we summarize by calculating the change of time difference between two
neurons for one loop. We note that during the jump, the y-difference is invariant
(up to an error of O(

√
ε)), and when traveling in upper or lower branches, the

t-difference is invariant. Let the initial difference z be sufficiently small, we have
∆T = ( 1

εg(L(y),y) |y=yρ
)z + h.o.t, ∆T ′ = ( −1

εg(P̄α(y),y)
|y=yρ

)z + h.o.t, Then the time

difference of ∆T will translate into the phase difference of z̃ at the left knee ∆T ′ =
∆T ′′ = ( −1

εg(Uα(y),y) |y=yλ
)z̃ + h.o.t and the final time difference after returning to L

is ∆T ′′′ = ( 1
εg(L(y),y) |y=yλ

)z̃ + h.o.t. We note here that because of the Heaviside

function type coupling, the systems are decoupled if they are both in L or Uα and
Pα, ∆T ′ = ∆T ′′, this is simpler than the direct or indirect synapse cases studied
by Terman et al [15].

Therefore we drive the ratio of time difference

∆T ′′′

∆T
=

∆T ′′′

∆T ′′

∆T ′′

∆T ′

∆T ′

∆T
=
g(Uα(y), y)|y=yλ

g(L(y), y)|y=yρ

g(L(y), y)|y=yλ
g(P̄α(y), y)|y=yρ

+ h.o.t. ≡ σ (8)

When the null surface of g is close to either the right knee of the lower branch L
or the left knee of upper branch Uα, the numerator g(Uα(y), y)|y=yλ

g(L(y), y)|y=yρ

is small and σ < 1. We derive that given any two solutions of initial difference

z ≤ z0, their time difference will decrease and ∆T (t) = O(σ
t

πα ) where πα = O(1/ε)
is the time duration for traveling on slow manifold L, Pα and Uα once.

Remark: We only discussed simplest senario in local synchronizations, while
there are other possible cases of synchronizations. However it does not necessary
hold global synchronization. It is also possible the two cells are synchronized but the
spikes are completely out of phase. On the other hand, the analysis can be carried
to a network of N-neurons, the implication there is that all neurons will form several
clusters if they are not completely synchronized. The number of cluster will depend
on the coupling strength α [16],[8].

5. Discussion. We are interested in the dynamic patterns that arise during the
transaction from unsynchronized chaotic actions of neurons to ultimately synchro-
nized regular neuronal activities as we increase the strength of the synaptic coupling.
Some numerical experiments suggested the neurons become regular first as we in-
creases the coupling, and then become synchronized. See Figure 5 for a regular but
unsynchronized bursting solution, when α = 0.05 in Eq. 4. This is partially un-
derstandable that as the parameter region for chaotic behavior to occur in a single
neuron is relatively narrow. However this behavior involves some transient dynam-
ics that cannot be entirely determined by one neuron alone, the chaotic behavior
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for coupled systems remains an open question. We plan to further study the tran-
sitional range and the evolution of the dynamical behavior of the system of coupled
neurons.
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Figure 5. For some medium coupling strength, there are regu-
larized bursting solutions of Equation 4. The coupling strength is
not strong enough to synchronize the solutions.
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