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1. Introduction 
In order to solve partial differential equations (PDEs) numerically, we need to 

discretize the continuous differential equation into a system of algebraic equations for the nodal 
values of the field on a suitable grid (mesh) covering the physical domain.  

Accuracy of the solution and computational efficiency are the two main concerns in 
computational grid generation. For problems with shock waves, boundary layers, etc. very fine 
grids over a small portion of the physical domain are required in order to resolve the large 
solution variations. The idea is to always put dense grids on the part which has large variation 
and coarse grids on the part which is smooth.  

Various techniques ([8][9][10][11][12][14][19]) have been developed for generating 
moving grids, which relocate grid points to regions where higher resolution is needed. The total 
number of points and the connection between grid points are kept the same so that there is no 
need to change the data structure of the solver.  

Different numerical methods are combined with moving grid techniques. Moving finite 
difference ([15],[16])and moving finite element ([17],[18])algorithms are developed. A moving 
mesh finite element method is designed to solve the incompressible Navier-Stokes equations in 
[20]. Some adaptive moving techniques for finite element and finite difference methods are 
reviewed in [21]. In [22], a moving mesh finite volume method is developed. Recently, the idea 
of meshfree adaptation is implemented in [38] and [39]. An overview of the meshfree methods 
can be found in [40].  

In this work, we describe three versions of the deformation method. Then we study a 
reconstruction problem: Given a differentiable and invertible transformation, reconstruct the 
transformation by a differential system of linear, first order differential operators. Such a 
reconstruction method is proposed and some numerical examples are presented. The method is 
based on the deformation method developed in [27] and [28]. The least squares finite element 
method is used to solve the partial differential equations. This reconstruction approach has 
potential applications in image registration and computer vision simulation.  
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2. The Deformation Method 
The deformation method is based on the idea of equivalent volume elements of a 

compact Riemannian manifold [26]. In 1992, this method is modified for grid adaptation in 
[28]. In this approach a new grid is constructed by moving the grid points such that specified 
cell volume distribution is achieved. A monitor function is defined according to the desired 
volume distribution. It is used to obtain a vector field by solving a linear Poisson equation. The 
grid points are moved according to a velocity field related to the vector field so obtained. The 
mathematical principles behind this method guarantee that grid lines of the same grid family 
will not cross each other. In [28], the Jacobian determinant, and consequently the cell volumes, 
was specified on the old grid before adaptation. In [31], the method is improved so that cell 
volumes can be specified as functions of the new grid after adaptation. In [30], this method is 
further extended into a real time moving grid method and used for solving one-dimensional 
unsteady problems. Some 1D and 2D applications and more analysis of adaptive moving grid 
by the deformation method were done in [29]. In [34], an adaptive deformation method is 
applied to solve the compressible Euler equations for field flows. A least-square finite element 
deformation method is developed in [36] and applied in [33] to a nonlinear problem. A 2D 
moving grid geometric deformable model using deformation method is developed in [35] for 
segmentation of image processing.   

There are three versions of deformation method.   
2.1 Version1 

This is one of the steady versions of the deformation method where the Jacobian 
determinant is specified on the old grid ξ  before adaptation.  
Problem: Given a monitor function ( )f ξ , find a transformation ( )1φ ξ  such that  

 ( ) ( ) ( )1 1detJ fφ φ ξ ξ= ∇ =  (2.1) 
We can use the following two steps to find such a transformation.  
Step 1: Find a vector field ( )V ξ that satisfies:  

 ( ) ( )div 1V fξ ξ= −    (2.2) 

Step 2: Define 
( )1t

VV
t t f

=
+ −

and find transformations ( )tφ ξ by solving the ordinary 

differential equations 

 
( ) ( ) [ ]0,1t

t t

d
V t

dt
φ ξ

φ= ∈  (2.3) 

Here ( ) ( ),t tφ ξ φ ξ= , and let ( ) ( )1 , 1tφ ξ φ ξ= = . 

Now, let us show that ( )1φ ξ satisfies (2.1). 
In order to prove this, let 

 

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

, 1

det 1

t t

t t

H t J t t f

t t f

ξ φ ξ φ ξ

φ ξ φ ξ

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= ∇ + −⎣ ⎦

 (2.4) 

We now show 
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 0H
t

∂
=

∂
 (2.5) 

Since ( ) ( )0 , 0tφ ξ φ ξ= = is the identity mapping, we have ( )0det 1φ ξ∇ =  and  ( )0φ ξ ξ= . 
Assuming that (2.5) is true. Then 
    ( ) ( )( ) ( )( ) ( )0 00, detH f fξ φ ξ φ ξ ξ= ∇ =  (2.6) 

Also by (2.4) we have  1(1, ) det ( )H ξ φ ξ= ∇  (2.7) 
Thus (2.1) follows from (2.5), (2.6) and (2.7).  
In order to prove (2.5), we need the Abel’s Lemma.  
Abel’s Lemma:  
Let M be a n n×  matrix such that each element of the matrix is differentiable function of t . If 

( )d M AM
dt

= where A  is a n n×  matrix, then (det ) (trace )(det )d M A M
dt

= . 

This is a standard lemma, which can be found, for instance, in [25] or other standard 
ordinary differential equation textbooks.  

Now we prove (2.5).  
Proof: 

  

( )( ) ( ) ( )( )( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

det 1

det 1

det 1

t t

t t

t t

H t t f
t t

t t f
t

t t f
t

φ ξ φ ξ

φ ξ φ ξ

φ ξ φ ξ

∂ ∂ ⎡ ⎤= ∇ + −⎣ ⎦∂ ∂

∂ ⎡ ⎤ ⎡ ⎤= ∇ + −⎣ ⎦ ⎣ ⎦∂

∂ ⎡ ⎤+ ∇ + −⎣ ⎦∂

 (2.8) 

Since ( ) ( )( )( ) ( )( )t t
d d V V
dt dt φ

φφ φ ξ φ⎛ ⎞∇ = ∇ = ∇ = ∇ ∇⎜ ⎟
⎝ ⎠

, by Abel’s Lemma we get:  

( ) ( )( )( )det trace dettV
t φφ φ∂

∇ = ∇ ∇
∂

, (2.9) 

where 

31 2

1 1 1

31 2

2 2 2

31 2

3 3 3

t

VV V

VV VV

VV V

φ

φ φ φ

φ φ φ

φ φ φ

∂∂ ∂
∂ ∂ ∂

∂∂ ∂
∇ =

∂ ∂ ∂
∂∂ ∂

∂ ∂ ∂

 

Thus  ( ) 31 2

1 2 3

trace divt t
VV VV Vφ φφ φ φ
∂∂ ∂

∇ = + + =
∂ ∂ ∂

 (2.10) 

Putting (2.10) into (2.9), we have 
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 ( ) ( )( )det div dettV
t φφ φ∂

∇ = ∇
∂

 (2.11) 

Plugging (2.11) into (2.8), we have: 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ){ }

div det 1 det 1

div det 1 det 1 1

det div 1 1 1

t

t t

t t

H V t t f t t f
t t

V t t f f t f V

V t t f f t f V

φ

φ

φ

φ φ

φ φ

φ

∂ ∂
= ∇ + − + ∇ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂

= ∇ + − + ∇ − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ∇ + − + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

    (2.12) 

By step 2, we have 
( )1tV V t t f= + −⎡ ⎤⎣ ⎦  

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

t t

t t

divV divV t t f V t f

divV t t f divV V t f

⇒ = + − + − ∇⎡ ⎤⎣ ⎦

⇒ + − = − − ∇⎡ ⎤⎣ ⎦

 (2.13) 

Plugging (2.13) into (2.12), we get: 

 

( ) ( ) ( )( ){ }

( )( )

det 1 1 1

det 1

t t
H divV V t f f t f V
t

divV f

φ

φ

∂
= ∇ − − ∇ + − + − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂

= ∇ + −

 (2.14) 

By step 1, plugging (2.2) into (2.14), we get  

 ( )( )det 1 1 0H f f
t

φ∂
= ∇ − + − =

∂
 

Now, our remaining problem is how to find ( )V ξ such that ( ) ( )div 1V fξ ξ= −  in 
Step 1. There are at least three different methods.  

Method 1: Direct construction. 
Method 2: Solve the Poisson equation 1fωΔ = − forω , then letV ω= ∇ .  
The V found out by this way satisfies  

( ) 1divV div fω ω= ∇ = Δ = − . 

Method 3: Solve the div-curl system
1

0
divV f
curlV

= −⎧
⎨ =⎩

. Least-square finite element 

method is a good way to solve it. 
We will discuss method 2 in Section 3. Here let us see some details about method 1.  
In 2D, we need to find a vector field ( )1 2,V V V  on [ ] [ ]0,1 0,1Ω = × such 

that div 1V f g= − = for a normalized monitor function 1f
Ω

=∫∫  

Let ( ) ( )1

1 2 20
, ,

x
G x x g t x dt= ∫  
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Define: 
( ) ( ) ( ) ( )

( ) ( ) ( )2

1 1 2 1 2 1 2

2 1 2 1 0

, , 1,
:

, ' 1, ,
x

V x x G x x h x G x
V

V x x h x G t dt

⎧ = −⎪
⎨

=⎪⎩ ∫
  (2.15) 

where ( )1h x is a function satisfying (0) 0h = , (1) 1h = and '(0) '(1) 0h h= = .  

For example, we can take ( )1( ) 1 cos
2

h t tπ= − . Then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )
( )

1 2

2

1 2

1 2 1 2 1 0
1 2

1 2 1 2 1 2

1 2

1 2

, 1, ' 1,

, ' 1, ' 1,

,

, 1.

x x

x

divV V V

G x x h x G x h x G t dt
x x

g x x h x G x h x G x

g x x

f x x

= +

∂ ∂ ⎡ ⎤= − +⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦∂ ∂

= − +

=

= −

∫
 

So the vector constructed by (2.15) satisfies the divergence equation.  
In 3D, a vector field ( )1 2 3, ,V V V V  such that 1divV f= −  can be defined by 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1

2

3

1

1 1 2 3 1 2 3 1 1 1 2 3 10 0

1 1 1

2 1 2 3 1 1 2 3 1 2 2 1 2 3 1 20 0 0 0

1 1

3 1 2 3 1 2 1 2 3 1 2 30 0 0

, , , , , ,

: , , ' , , , ,

, , ' ' , , ,

x

x

x

V x x x g t x x dt h x g t x x dt

V V x x x h x g t t x dt dt h x g t t x dt dt

V x x x h x h x g t t x dt dt dt

⎧ = −⎪
⎪

= −⎨
⎪
⎪ =⎩

∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

  

 

where ( )1( ) 1 cos
2

h t tπ= − . We can check directly that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

1 2 31 2 3

1 1

1 2 3 1 1 2 3 1 1 1 2 3 10 0

1 1 1 1

1 2 1 2 3 1 2 1 2 1 2 3 1 20 0 0 0

1 2 3

1 2 3

, , ' , , ' , ,

' ' , , ' ' , ,

, ,

, , 1

x x xdivV V V V

g x x x h x g t x x dt h x g t x x dt

h x h x g t t x dt dt h x h x g t t x dt dt

g x x x

f x x x

= + +

= − +

− +

=

= −

∫ ∫

∫ ∫ ∫ ∫  

Another interesting direct construction method is worked out by in [27]. 
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2.2 Version 2 
This is another static version of the deformation method where the Jacobian 

determinant is specified on the new grid ( )φ ξ  after adaptation.  

Problem: Given g  and f (properly normalized), find a transformation :φ ∂Ω→ ∂Ω  such that   
 ( ) ( )( ) ( )( ) ,g J fξ φ ξ φ ξ ξ= ∈Ω    

where g and f satisfy 
1 1
f gΩ Ω
=∫ ∫ . 

Note: The special case when g=1 was treated in [32]. The general case is proposed in [43]. The 
material below is based on [43]. It is included here for self-completeness. 

We can use the following three steps to find such a transformation. 
Step 1 Compute V  such that 

1 1( ( ))
( ) ( )

div V
g f

ξ
ξ ξ

= − inΩ , and ( ) 0,V nξ ξ⋅ = ∈∂Ωv . 

Step 2 For each fixed nodeξ , solve the ODE 

( ) ( )( ),
, , 0 1

t
t t t

t
ϕ ξ

η ϕ ξ
∂

= ≤ ≤
∂

 

with ( ),0 ,ϕ ξ ξ=  where ( ) ( )

( ) ( ) ( )

, 1 11

V x
x t

t t
f x g x

η =
− −

 

Step 3 Define ( ) ( ),1φ ξ ϕ ξ= , then φ  will be the solution. 

Now, we show thatφ  satisfies (2.16). 

Let  ( ) ( )( )( ) ( )( ) ( ) ( )( )
1 1, , 1

, ,
H t J t t t

f t g t
ξ ϕ ξ

ϕ ξ ϕ ξ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.17) 

If we can show (2.17) is independent of t , i.e.  

 0H
t

∂
=

∂
 (2.18) 

then ( ) ( )( ) ( )( ) ( )1,0 ,0 1/
,0

H J g
g

ξ ϕ ξ ξ
ϕ ξ

= =  and  

( ) ( )( )( ) ( )( ) ( )( )1,1 ,1 /
,1

H J J f
f

ξ ϕ ξ φ ξ
ϕ ξ

= =  

( ) ( ) ( ) ( )( )0 ,0 ,1 1/ /H H H g J f gJ f
t

ξ ξ ξ φ ξ∂
= ⇒ = ⇒ = ⇒ =

∂
 

The proof of (2.18) is very similar to the proof of the first case [42].  
 
2.3 Version 3 [31] 

This is the version for real time (or time-accurate) adaptation. 
Problem: Given a monitor function f(x,t), normalized so that 
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1 , where  is the volume of the domain
f
= Ω Ω∫ , find a transformation φ  such that 

 ( )( ) ( )( ), , ,J t f t tφ ξ φ ξ=  for 0t > , (2.19) 
assuming that (2.19) is true at 0t = .  
Such a transformation can be found by the following two steps. 
Step 1: Find a vector field ( ),V tφ such that:  

( ) ( ) ( )1div , ,
,

V t g t
t f t tφ φ φ

φ
∂ ∂

= − = −
∂ ∂

, 

where ( )( ) ( )( )
1, ,

, ,
g t t

f t t
φ ξ

φ ξ
=  . 

Step 2: Solve the following ordinary differential equation (ODE) for the transformation ( ), tφ ξ : 

 
( ) ( ) ( ) ( ),

, , ,
t

f t V t t
t

φ ξ
φ φ η φ

∂
= =

∂
. 

We now show that ( , )tφ ξ satisfies (2.19). 
In order to prove this, define H(ξ ,t) by 

( )( ) ( )( ) ( )
( )

,
det , , ,

,
J t

H t g t t Jg
f t
φ

φ ξ φ ξ
φ

= ∇ = = . 

If we can show 0H
t

∂
=

∂
, then we have constJH

f
= = . 

Proof of 0H
t

∂
=

∂
:  

( )( ) ( )( ), ,
, ,

g t tH J g t t J
t t t

φ ξ
φ ξ

∂∂ ∂
= +

∂ ∂ ∂
 (2.20) 

By Abel’s Lemma, since 

            ( ) ( ) ( )( )( )t t tξ ξ φ ξ φ ξ
φ φφ φ η φ∂ ∂ ⎛ ∂ ⎞⎛ ⎞ ⎛ ⎞∇ = ∇ = ∇ ∇ = ∇ ∇⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

, we get 

( ) ( )( )( )( )

( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )

det trace , det

div , det div , ,

, div , , , ,

,

J t
t t

t f t V t J

f t V t f t V t J

gf f V J
t

φ

φ φ

φ φ

φ

φ η φ φ

η φ φ φ φ

φ φ φ φ

∂ ∂
= ∇ = ∇ ∇

∂ ∂

= ∇ =

⎡ ⎤= + ∇⎣ ⎦

∂⎡ ⎤= − + ∇⎢ ⎥∂⎣ ⎦
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That is  ,J gf f V J
t t φ

∂ ∂⎡ ⎤= − + ∇⎢ ⎥∂ ∂⎣ ⎦
 (2.21) 

Also we have 
( ),

,
g t gg

t t tφ

φ φ∂ ∂ ∂
= ∇ +

∂ ∂ ∂
 (2.22) 

Plugging (2.21) and (2.22) into (2.20), we get 

( )

, ,

, , (note: is used)

1, , (note: 1 is used)

, note: 1 ( ) 0

H g gf f V Jg J g
t t t t

g gJ fg f V g g fV fV
t t t

g gJ f V g f g V g fg
t t f

J g f f g V fg fg g f f g

φ φ

φ φ

φ φ

φ φ

φ

φ

∂ ∂ ⎛ ∂ ∂ ⎞⎡ ⎤= − + ∇ + ∇ +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎝ ⎠

∂ ∂ ∂⎡ ⎤= − + ∇ + ∇ + =⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂⎡ ⎤= − + ∇ + ∇ + = ⇒ =⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤= ∇ + ∇ = ⇒∇ = ∇ + ∇ =⎣ ⎦ ( )is used

0,

0

J V= ⎡ ⎤⎣ ⎦

=
 
        The numerical implementations for all the three versions are similar. The method 
for version1 also works for other versions after the right hand side of the divergence equation is 
adjusted accordingly.  
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3. Reconstruction of Transformations 
In this section we reconstruct differentiable transformations using a div-curl system. 

The idea comes from the implementation of deformation method for finding transformations. 
Notice that for all the three versions, the first step is to find a vector field by solving a 
divergence equation with different right hand sides.  After we add an equation of the curl of the 
vector field, we can set up a div-curl system of equations. The least-square finite element 
method is a good way to solve it [41]. Now let’s think in the opposite direction. For a 
transformation given on a uniform initial grid we can calculate its divergence and curl at each 
point. Thus we can set up a div-curl system of equations for each point. Solving this system on 
the grid, we can reconstruct the given transformation. This idea can be used to reconstruct any 
differentiable and invertible transformation.  

This reconstruction method may apply to image registration, which is the process of 
establishing point-by-point correspondence between two images of a scene. Sets of data 
acquired by sampling the same scene or object at different times, or from different perspectives, 
are in different coordinate systems. Image registration is the process of transforming the 
different sets of data into one coordinate system. Registration is necessary in order to be able to 
compare or integrate the data obtained from different measurements. This process is also needed 
in various computer vision applications. 
3.1 Div-curl System 

We will first take a look at the div-curl system. Let D  be an open bounded domain in 
R3 with a piecewise smooth boundary 1 2Γ = Γ ΓU . Let ( ), ,x y z  denote a point in D . 

Let F Pi Qj Rk= + +
vv v

 be a vector field in D . Let nv  be the unit outward normal vector on the 
boundary. Then the 3D div-curl system of equations is: 

  
1

2

0
0

divF in D
curlF in D
n F on
n F on

α

β

=⎧
⎪ =⎪
⎨

⋅ = Γ⎪
⎪ × = Γ⎩

v

v

v

 (3.1) 

where 1 2 3i j kβ β β β= + +
vv v v

. 
Our goal is to solve for , ,P Q R , for a total of three unknowns. But we have four scalar 

equations in this system. So, it appears that this system is ‘over-determined’. Let us reconsider 
this system by introducing a dummy variable θ  as in [43], where 0θ ≡  in D  and  0θ =  on 

1Γ  so that the system becomes: 

 1

1

2

0
0

0

divF in D
curlF in D

n F on
on

n F on

α

θ β

θ

=⎧
⎪∇ + =⎪⎪ ⋅ = Γ⎨
⎪ = Γ⎪
⎪ × = Γ⎩

v

v

v

 (3.2) 

It can be shown that system (3.2) is equivalent to system (3.1). Detailed proof can be 
found in [41]. Notice that system (3.2) is a system with four unknowns and four equations.  

In Cartesian coordinates, we have: 
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R Q P R Q Pcurl F i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

vv v
 

i j k
x y z
θ θ θθ ∂ ∂ ∂

∇ = + +
∂ ∂ ∂

vv v
 

P Q Rdiv F
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

 

So system (3.2) can be written as: 

 

1

2

3

R Q
x y z

P R
y z x

Q P
z x y
P Q R
x y z

θ β

θ β

θ β

α

∂ ∂ ∂⎧ + − =⎪ ∂ ∂ ∂⎪
∂ ∂ ∂⎪ + − =⎪ ∂ ∂ ∂⎪

⎨∂ ∂ ∂⎪ + − =
⎪ ∂ ∂ ∂
⎪
∂ ∂ ∂⎪ + + =

⎪ ∂ ∂ ∂⎩

 (3.3) 

Define 

P
Q

F
R
θ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

%  and

1

2

3

β
β

β
β
α

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

% , then this system can be written in a matrix form: 

0 1 2 3
F F FA F A A A
x y z

β∂ ∂ ∂
+ + + =

∂ ∂ ∂

% % %
%%  where 

0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

A

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

,  

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟
⎝ ⎠

,  3

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

A

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

For any nonzero triplets ( ), ,x y z , the characteristic polynomial for system (3.3) is  

( )22 2 2
1 2 3

0
0

det( ) det 0
0

0

z y x
z x y

A x A y A z x y z
y x z

x y z

−⎛ ⎞
⎜ ⎟−⎜ ⎟+ + = = + + ≠
⎜ ⎟−
⎜ ⎟
⎝ ⎠
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Thus, system is elliptic and properly determined.  
Least-square finite element method is a good way to solve the div-curl system. Detailed analysis 
can be found in [41]. The numerical implementation procedures can be found in [39].  
3.2 Least Squares FEM 

Let us consider the linear boundary-value problem: 
  

 Au f=  in Ω  
 Bu g=   on Γ  (3.4) 

where 0
1

dn

i
i i

uAu A A u
x=

∂
= +

∂∑ ( 2dn =  for 2D, 3dn =  for 3D). B is a boundary operator. f and 

g are given vector-valued functions. u is a vector with m unknown functions of ( )1, dnx xLx . 

1

2 ,

m

u
u

u

u

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

1

2 ,

dn

f
f

f

f

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

1

2

dn

g
g

g

g

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

L
 

Define the residual as R Au f= − , then if 0R = we get the exact solution for u . The least-
square finite element method is to minimize R in a least-square sense, that is, to minimize the 
following functional: 

( ) ( )
22

0
I v R Av f dω

Ω
= = −∫ . 

A necessary condition for u to minimize ( )I v is: 

( )
0

lim 0
t

d I u tv
dt→

+ =  . 

Since 

( ) ( )

( ) ( ) ( )( ) ( ) ( )

2

2 2 2 2 2 2 2 ,

I u tv A u tv f d

Au Av t f Au Av t Av ft Au f d

ω

ω

Ω

Ω

+ = + −⎡ ⎤⎣ ⎦

⎡ ⎤= + + + − −⎣ ⎦

∫

∫
 

we have  

( ) ( ) ( )( ) ( )

( )( ) ( )

2

0 0
lim lim 2

2

0.

t t

d I u tv Av t Au Av Av f d
dt

Au Av Av f d

ω

ω

Ω→ →

Ω

⎡ ⎤+ = + −⎣ ⎦

= −⎡ ⎤⎣ ⎦

=

∫

∫  

Thus 
( )( ) ( )Au Av d Av f dω ω

Ω Ω
=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ . 
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That is   
 ( ) ( ), ,Au Av f Av= .  (3.5) 

This is the variational principle of equation (3.4). 
In finite element, we discretize the domain into elements and then introduce finite 

element basis. Let jϕ be the element shape function, we write the expansion of the unknown 
variables in each element as 

 ( ) ( )

1

2

1

nN
e
h j

j

m j

u
u

u

u

ϕ
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
L

x x  (3.6) 

where nN is the number of nodes for one element.  
Introducing (3.6) into (3.5) we get a linear system of algebraic equations: 

 KU F=  (3.7) 
Here  

( ) ( )1 2 1 2, , , , , ,
n n

T

e N NK A A A A A A dϕ ϕ ϕ ϕ ϕ ϕ
Ω

= Ω∫ L L  

( )1 2, , ,
n

T

e NF A A A fdϕ ϕ ϕ
Ω

= Ω∫ L  

are the element matrices used to assemble the global matrix K  and F .  
3.3 Solving the Div-Curl System 

Let’s take a look at the definition of divergence and curl of a vector field first.  
If Pi Qj Rk= + +

vv v
V  is a vector field on 3�

33and the partial derivatives of ( ), ,P x y z , 

( ), ,Q x y z  and ( ), ,R x y z all exist, then  

P Q Rdiv
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

V  

R Q P R Q Pcurl i j k
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

vv v
V  

In 2D, all the terms related to R  and z vanish. So we have 
P Qdiv
x y

∂ ∂
= +
∂ ∂

V  

Q Pcurl k
x y

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠

v
V , where k

v
 is the unit outward normal vector, usually denoted 

as nv .  
The matrix form of the div-curl system can be written as: 
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1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

P Q R
P x y zP P
y R Qx z

Q Q Q y z
x y z P R
R RR z x
x zy

∂ ∂ ∂
+ +

⎛ ⎞∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ∂ ∂ ∂ ∂ ∂⎜ ⎟ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎜ ⎟− ∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∂⎝ ⎠ Q P
x y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

  

In 3D, linear hexahedral elements are used and the finite element approximation at each 
hexahedral is given by  

( )
8

1

i
e

h i i
i

i

p
V x q

r
ϕ

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑  

where , ,i i ip q r  are the nodal values at the thi node of the hexahedral element and iϕ ’s are the 
shape functions. 
The element matrices used to assemble the algebraic system KV F= are 

( ) ( )

( ) ( )

1 1 1 8

8 1 8 8

e

T T

e
T T

A A A A
K d

A A A A

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫
L

M O M

L

 

( )

( )

1

8

e

T

e
T

A
F d

A

ϕ

ϕ
Ω

⎛ ⎞
⎜ ⎟

= Ω⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ M

f

f

 

where  
0

for 1,2,...,8.
0

0

i i i

i i

i
i i

i i

x y z

z yA i

z x

y x

ϕ ϕ ϕ

ϕ ϕ

ϕ
ϕ ϕ

ϕ ϕ

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟

∂ ∂⎜ ⎟
−⎜ ⎟∂ ∂⎜ ⎟= =

⎜ ⎟∂ ∂
−⎜ ⎟∂ ∂⎜ ⎟

∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

  



 

 

 

15

and

P Q R
x y z

R Q
y z
P R
z x
Q P
x y

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂⎜ ⎟

−⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟∂ ∂

−⎜ ⎟∂ ∂⎜ ⎟
∂ ∂⎜ ⎟−⎜ ⎟∂ ∂⎝ ⎠

f = , calculated from the given transformation.  

4. Numerical Examples 
W set the position for the given transformation as ( ), ,xn i j k , ( ), ,yn i j k , ( ), ,zn i j k , 

and the array for our initial grid as ( ), ,x i j k ,  ( ), ,y i j k , ( ), ,z i j k , then 

 
( ) ( )
( ) ( )

1, , 1, ,
1, , 1, ,

xn i j k xn i j kP
x x i j k x i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, 1, , 1,
, 1, , 1,

xn i j k xn i j kP
y y i j k y i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, , 1 , , 1
, , 1 , , 1

xn i j k xn i j kP
z z i j k z i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

1, , 1, ,
1, , 1, ,

yn i j k yn i j kQ
x x i j k x i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, 1, , 1,
, 1, , 1,

yn i j k yn i j kQ
y y i j k y i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, , 1 , , 1
, , 1 , , 1

yn i j k yn i j kQ
z z i j k z i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

1, , 1, ,
1, , 1, ,

zn i j k zn i j kR
x x i j k x i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, 1, , 1,
, 1, , 1,

zn i j k zn i j kR
y y i j k y i j k

+ − −∂
=

∂ + − −
 

( ) ( )
( ) ( )

, , 1 , , 1
, , 1 , , 1

zn i j k zn i j kR
z z i j k z i j k

+ − −∂
=

∂ + − −
 

Following are some of the numerical examples. Let the coordinates of the new position of node 

Xi be XNi. We define Error = max ( ) ( ) ( )2 2 2
i i i i i i i iXN X xn x yn y zn z− = − + − + −  ,  

i = 1,…, nmax. Error is the maximal distance between each pair of corresponding nodes of the 
given and the reconstructed transformations. nmax is the maximum number of nodes. Error is 
used to measure the accuracy of the reconstruction method.  
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The grid size of the following examples is 64 64× over the unit square [ ] [ ]0,1 0,1× for 

2D and 40 40 40× × over the unit cube [ ] [ ] [ ]0,1 0,1 0,1× ×  for 3D. That means the distance 

between adjacent points in the uniform grid is
1 =0.015625
64

 for 2D and 
1 =0.025
40

 for 3D.  

Example 1:  A transformation from the uniform Cartesian grid (Figure 1.1) to a grid 
stretched to a rectangle and refined around an arc is reconstructed. Figure 1.2 shows the 
intermediate step at half of the time steps. The final result is shown in Figure 1.3.  

Example 2: A transformation on the 3D Cartesian grid from a unit cube is shown in 
Figure 2.1 by a grid adapted to a sphere. The reconstructed transformation is shown in Figure 
2.2. The maximum error in is Error = 5.225×10-3, which is compared favorably to the grid size 
1 =0.025
40

= 25×10-3. 
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Figure 1.1 The Given Transformation in Example 1 
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Figure 1.2 Reconstruction at time step 5t =  
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Figure 1.3 Reconstruction at time step 1 0t =  
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Figure 2.1 The Given Transformation in Example 2: A cube with a ball inside (cutaway plot) 
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Figure 2.2 Reconstruction of Figure 2.1 for Example 2  
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5. Conclusions 
In the first part of this paper, we describe all three versions of the deformation method 

for adaptive grid generation. For a monitor function f constructed according to desired grid size 
distribution, we can construct a transformation with Jacobian determinant J f= .  

The main result of the paper is in the second part. We show that one can reconstruct 
any given differentiable, invertible transformation by its divergence and curl. The least squares 
finite element method is used to solve the div-curl system. Numerical examples in both two and 
three dimensions are presented. The examples show excellent accuracy of the method.  
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