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Abstract

In this paper, we present a numerical method to solve the palindromic quadratic
eigenvalue problem (PQEP) (λ2AT+λQ+A)z = 0 arising from the vibration analysis
of high speed trains, where A, Q ∈ Cn×n have special structures: both Q and A are
m × m block matrices with each block being k × k, and moreover they are complex
symmetric, block tridiagonal and block Toeplitz, and also A has only one nonzero
block in the (1,m)th block position. The method is an improved version of Guo’s and
Lin’s efficient solvent approach [SIAM J. Matrix Anal. Appl., 31 (2010), 2784-2801]
which solves the PQEP by computing the so-called stabilizing solution to the mk×mk
nonlinear matrix equation X + ATX−1A = Q via the doubling algorithm. Here, we
exploit the fact that the stabilizing solutionX differs from Q only in its (m,m)th block
position and which had also been noted and exploited by Guo and Lin there, too. What
distinguishes our method from theirs is that we devise a new nonlinear matrix equation

X̃ + Ã
T
X̃−1Ã = Q̃ of only k × k in size just for computing the differing block. The

new and much smaller matrix equation is also solved by the doubling algorithm at the
same speed in terms of the number of doubling iterations as but about 4.8 times faster
in flops than the doubling algorithm on the larger matrix equation, and its stabilizing
solution X̃ is used to recover the bigger stabilizing solution X. Numerical examples
are presented to show the effectiveness of the improved method.

Key words. palindromic quadratic eigenvalue problem, nonlinear matrix equation, solvent
approach, doubling algorithm
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1 Introduction

The palindromic quadratic eigenvalue problem (PQEP) [11, 12, 15] is to find scalars λ and
nonzero vectors z such that

P (λ)z ≡ (λ2AT + λQ+A)z = 0, z ̸= 0, (1.1)
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where A and Q are n × n (real or complex) matrices and QT = Q (complex symmetric).
When (1.1) holds for a scalar λ and a vector z ̸= 0, we call λ a quadratic eigenvalue and z
a corresponding quadratic eigenvector. Counting multiplicities, it has 2n eigenvalues some
of which may be infinities1. It can be seen that the quadratic eigenvalues of PQEP (1.1)
come in reciprocal pairs {λ, 1/λ}.

Our focus in this paper is on the PQEP arising from the vibration analysis of high
speed trains [4, 7, 14], where

Q = Kt + ιωDt − ω2Mt ∈ Cn×n, (1.2)

A = Kc + ιωDc − ω2Mc ∈ Cn×n, (1.3)

ι is the imaginary unit, ω > 0 is the frequency of the external excitation force, and Kt,
Dt, Mt, Kc, Dc, Mc are real m×m block matrices with each block being k × k:

Kt =



k k k ... k

k K0 KT
1

k K1 K0 KT
1

k K1
. . .

. . .
...

. . .
. . . KT

1

k K1 K0

, Mt =



k k k ... k

k M0 MT
1

k M1 M0 MT
1

k M1
. . .

. . .
...

. . .
. . . MT

1

k M1 M0

, (1.4)

Kc =


k

k I
k 0
...

...
k 0

×
[ k ... k k

0 . . . 0 K1

]
, Mc =


k

k I
k 0
...

...
k 0

×
[ k ... k k

0 . . . 0 M1

]
, (1.5)

Dt = c1Mt + c2Kt, Dc = c1Mc + c2Kc with c1, c2 > 0, (1.6)

and K0 = KT
0 . From (1.2) – (1.6), we see that Q is a complex symmetric, Toeplitz block

tridiagonal matrix and A is a very sparse matrix since it has only one nonzero block in its
(1,m)th block position.

This PQEP (1.1) has been providing much motivation for studying palindromic polyno-
mial eigenvalue problems (see, e.g. [7, 15, 16]). Several numerical methods were proposed
[4, 7, 11, 12, 13] and some of them are not limited to PQEP of this form. For the case
here, A is of very low rank, and thus PQEP (1.1) has many infinite eigenvalues, creating
numerical challenges. Most of the existing methods start by deflating out those infinite
eigenvalues.

In [4, 7], the so-called solvent approach was explored for numerically solving PQEP
(1.1). The approach consists of two steps:

1. Compute the stabilizing solution Φ of the matrix equation

X +ATX−1A = Q (1.7)

by the doubling algorithm [4], where A and Q are given by (1.2) – (1.6). By the
stabilizing solution, we mean the spectral radius ρ(Φ−1A) < 1. Guo and Lin [7]

1Infinite eigenvalues are defined through the quadratic eigenvalue 0 of λ2 P (1/λ) = AT + λQ+ λ2A.
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showed that P (λ) with Q and A given by (1.2) – (1.6) has no eigenvalues on the
unit circle and thus the stabilizing solution Φ exists.

Φ is one of many possible solutions of (1.7), called the solvent matrices. Any solvent
matrix X gives rise to the following factorization for P (λ):

P (λ) = λ2AT + λQ+A = (λAT +X)X−1(λX +A). (1.8)

2. Solve the (linear) eigenvalues for matrix pencils λAT + Φ and λΦ + A. Not the
eigenvalues of λAT + Φ and those of λΦ+A enjoy the reciprocal relation: if µ is an
eigenvalue of one, then 1/µ is an eigenvalue of the other.

Finally the quadratic eigenvalues of P (λ) are the multiset union of the eigenvalues of
the two matrix pencils λAT + Φ and λΦ + A. The eigenvectors of λΦ + A are also the
quadratic eigenvectors of P (λ), but those of λAT + Φ need to be processed to yield the
corresponding quadratic eigenvectors of P (λ) [7]. This solvent approach works on the
whole PQEP directly without deflating out the infinite eigenvalues, and numerical tests
suggest that it delivers more accurate numerical solutions than other existing methods [7].

The complete Guo-Lin algorithm [7] is essentially this solvent approach with clever
exploitations of the structures in A and Q to dramatically reduce the cost in solving the
mk ×mk matrix equation (1.7) by the doubling algorithm. In this paper, we will exploit
the structures even further by proposing a new and more efficient implementation for the
part of computing the stabilizing solution Φ. It is made possible by an observation in the
structure of any solution X of (1.7): it differs from Q only in the (m,m)th block position.
Thus it may be unnecessary to solve (1.7) but potentially some matrix equation for the
(m,m)th block alone. We prove that this is indeed the case and devise a new matrix
equation

X̃ + Ã
T
X̃−1Ã = Q̃

of k × k in size only just for determining that block. The new and much smaller matrix
equation can also be solved by the doubling algorithm and because of its much smaller
size, it can be solved much faster.

We point out that the solvent approach for more general quadratic eigenvalue problems
was explored before (see, e.g., [5, 9, 8, 10, 18]).

The rest of this paper is organized as follows. In section 2, we review briefly the
doubling algorithm that used in [7] for computing the stabilizing solution Φ of (1.7). In
section 3, we exploit the structure of the stabilizing solution and devise a k × k matrix
equation whose solution can be used to recover Φ. In section 4, we outline implementation
details about our improved method. Section 5 presents our numerical results comparing
the improved method here with the Guo-Lin method in [7]. Finally concluding remarks
are given in section 6.

Notation. Cn×m is the set of all n × m complex matrices, Cn = Cn×1, and C = C1.
In (or simply I if its dimension is clear from the context) is the n × n identity matrix,
and ej is its jth column. The superscripts “·T” and “·H” takes the transpose and complex
conjugate transpose of a matrix or vector, respectively. We shall also adopt MATLAB-like
convention to access the entries of vectors and matrices. Let i : j be the set of integers from
i to j inclusive. For a vector u and a matrix X, u(j) is u’s jth entry, X(i,j) is X’s (i, j)th
entry; X’s submatrices X(k:ℓ,i:j), X(k:ℓ,:), and X(:,i:j) consist of intersections of row k to
row ℓ and column i to column j, row k to row ℓ, and column i to column j, respectively.
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2 The doubling algorithm

The key and novel step of the Guo-Lin solvent approach is to use the stabilizing solution
X = Φ of (1.7) to factorize P (λ) as in (1.8). Once (1.8) with X = Φ is gotten, the QZ
algorithm implemented in LAPACK [1] and in MATLAB as eig(...) is readily applicable
to solve the eigenvalue problems2 for λAT+Φ and λΦ+A whose combined eigen-solutions
gives the full spectral information for PQEP (1.1).

The doubling algorithm [3], Algorithm 2.1, was used to solve the matrix equation (1.7)
for its stabilizing solution [4, 7].

Algorithm 2.1 The doubling algorithm for solving (1.7)

Given A,Q = QT ∈ Cn×n, this algorithm computes a solution of (1.7).

1: A0 = A, X0 = Q, Y0 = 0.
2: for i = 1, 2, . . . , do
3: Ai+1 = Ai(Xi − Yi)

−1Ai;
4: Xi+1 = Xi −AT

i (Xi − Yi)
−1Ai;

5: Yi+1 = Yi +Ai(Xi − Yi)
−1AT

i ;
6: end for
7: return Xi as the computed solution at convergence.

We mentioned in section 1 that for the PQEP arising from the vibration analysis of
high speed trains, (1.7) has the stabilizing solution Φ which is unique [7]. Once Φ is
computed, the n quadratic eigenvalues of P (λ) inside the unique circle can be computed
by solving the eigenvalues of λΦ + A, and the other n quadratic eigenvalues which are
outside the unique circle are their reciprocals.

It is shown in [7] that Xi generated by Algorithm 2.1 converges to the stabilizing
solution Φ quadratically, and

lim sup
i→∞

2i
√

∥Xi − Φ∥ ≤ [ρ(Φ−1A)]2, (2.1)

where ρ(·) is the spectral radius of a matrix, and ∥·∥ is any matrix norm. As a by-product,
Q− Yi converges to the stabilizing solution Ψ of the complementary matrix equation

Y +AY −1AT = Q (2.2)

of (1.7), and

lim sup
i→∞

2i
√

∥(Q− Yi)− Ψ∥ ≤ [ρ(Φ−1A)]2.

Because of the quadratic convergence, Xi+1 − Xi is usually a good indicator of error in
Xi as an approximation to Φ. This can be seen as follows. Let ϵ = ∥Xi+1 − Xi∥. For i
sufficiently large such that the quadratic convergent behavior shows, i.e.,

∥Xj+2 −Xj+1∥ ≤ α ∥Xj+1 −Xj∥2 for j ≥ i,

2By exploiting the sparsity structure of A, Guo and Lin [7] showed how themk×mk eigenvalue problems
can be solved via two eigenvalue problems of only k × k in size.
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where α is some constant, then

Φ−Xi =

∞∑
j=i

(Xj+1 −Xj) ⇒ ∥Φ−Xi∥ ≤ ϵ+

∞∑
j=1

αϵ2j = ϵ+
αϵ2

1− ϵ2
≈ ϵ.

Therefore a reasonable stopping criteria for Algorithm 2.1 is

∥Xi+1 −Xi∥
∥Xi∥

≤ rtol, (2.3)

where rtol is a given relative tolerance which, in our numerical tests, was set to a modest
multiple of 2−52, the machine unit roundoff of the IEEE double precision since our tests
were carried within MATLAB.

3 Structure of the stabilizing solution

It is evident that the success of this solvent approach lies critically in whether the sta-
bilizing solution Φ can be efficiently computed by the doubling algorithm. In [7], it was
shown that, by taking advantage of the special sparse structures of the coefficient matrices
Q and A, each iterative step in Algorithm 2.1 costs about (154/3)k3, despite all involved
matrices are n× n, where n = mk.

In this section, we will show that the complexity of computing the solvent can be
further reduced to solving a matrix equation having the same form as (1.7) but of only
k× k instead of n× n, the size of original (1.7). This is made possible by the observation
that any solvent matrix of (1.7) is the same as Q in all its blocks except the one in the
(m,m)th block position.

For the ease of presentation, we partition A and Q in (1.2) and (1.3) as

A =


k (m−2)k k

k 0 0 A13

(m−2)k 0 0 0
k 0 0 0

, Q =


k (m−2)k k

k Q11 Q12 0
(m−2)k QT

12 Q22 Q23

k 0 QT
23 Q33

. (3.1)

The following two theorems are the main theoretical results of this paper.

Theorem 3.1. Let X be a solution to (1.7), and partition X and X−1 in the same way
as in (3.1) for A and Q. Then

X =


k (m−2)k k

k Q11 Q12 0
(m−2)k QT

12 Q22 Q23

k 0 QT
23 X33

, (3.2)

i.e., Xij = Qij for i, j = 1, 2, 3, except for i = j = 3, and X33 satisfies

X33 +AT
13(X

−1)11A13 = Q33, (3.3)

where (X−1)11 ∈ Ck×k is the (1, 1)st block of X−1.
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Proof. Since

A =

Ik0
0

 [
0 0 A13

]
,

the matrix equation (1.7) becomes

X +

 0
0

AT
13

 (X−1)11
[
0 0 A13

]
= Q. (3.4)

Equate the corresponding blocks in the two sides of (3.4) to get (3.2) and (3.3).

Despite being n × n, Theorem 3.1 says that only the k × k submatrix of Φ in the
lower-right corner needs to be computed, the rest of Φ is known for free. But (3.3) doesn’t
have the same form as (1.7) and thus the doubling algorithm is not readily applicable.
The next theorem transforms (3.3) into a k×k matrix equation which does have the same
form as (1.7) and thus makes the doubling algorithm applicable.

Theorem 3.2. Under the conditions of Theorem 3.1, let

C22 =

[ k (m−2)k

k Q11 Q12

(m−2)k QT
12 Q22

]
. (3.5)

Suppose Q11 and C22 are nonsingular, and view C−1
22 ∈ C(m−1)k×(m−1)k as an (m − 1) ×

(m − 1) block matrix with each block being k × k and denote by (C−1
22 )ij its (i, j)th block.

Then the matrix equation (3.3) can be transformed into

X̃ + Ã
T
X̃−1Ã = Q̃, (3.6)

where

X̃ = X33 −AT
13 (C

−1
22 )m−1,m−1A13, (3.7a)

Ã = A13 (C
−1
22 )1,m−1A13, (3.7b)

Q̃ = Q33 −AT
13 (C

−1
22 )1,1A13 −AT

13(C
−1
22 )m−1,m−1A13. (3.7c)

Proof. By Theorem 3.1,

X =

[ (m−1)k k

(m−1)k C22 C23

k CT
23 X33

]
with C23 =

[ k

(m−1)k 0
k Q23

]
. (3.8)

It can be seen that Q23 = A13 by (1.2) – (1.6). Recall3

X−1 =

[
C22 C23

CT
23 X33

]−1

=

[
C−1
22 + C−1

22 C23Ĉ
−1
22 CT

23C
−1
22 −C−1

22 C23Ĉ
−1
22

−Ĉ−1
22 CT

23C
−1
22 Ĉ−1

22

]
, (3.9)

3This is well-known. See, e.g., [6, pp.102-103], [19, Page 23].
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where

Ĉ22 = X33 − CT
23C

−1
22 C23

= X33 −
[
0 A13

]
C−1
22

[
0

AT
13

]
= X33 −AT

13(C
−1
22 )m−1,m−1A13

= X̃. (3.10)

Noticing that C−1
22 is symmetric since C22 is symmetric, we have

(X−1)1,1 = (C−1
22 + C−1

22 C23Ĉ
−1
22 CT

23C
−1
22 )1,1

= (C−1
22 )1,1 + (C−1

22 C23Ĉ
−1
22 CT

23C
−1
22 )1,1

= (C−1
22 )1,1 +

(
C−1
22

[
0

AT
13

])
1,1

Ĉ−1
22

([
0 A13

]
C−1
22

)
1,1

= (C−1
22 )1,1 + (C−1

22 )1,m−1A
T
13Ĉ

−1
22 A13(C

−1
22 )m−1,1. (3.11)

Plug in the expression for Ĉ−1
22 in (3.10) into (3.11) and then plug in the resulting expression

for (X−1)1,1 into (3.3) to get (3.6).

By Theorem 3.2, it suffices to solve the k×k matrix equation (3.6), instead of the n×n
matrix equation (1.7) that is solved in [7], in order to compute the stabilizing solution Φ.
That is where we improve the Guo-Lin solvent approach [7].

4 Computations of Φ and eigenpairs

By Theorems 3.1 and 3.2, to compute the solvent matrix Φ, we need to calculate the
matrices Ã and Q̃ in (3.7b) and (3.7c) and then solve the matrix equation (3.6) to recover
X33 by (3.7a) and thus Φ. Finally, we can solve the eigenvalue problems for λAT +Φ and
λΦ+A.

4.1 Set up (3.6)

For this purpose, we have to compute

(C−1
22 )1,1, (C−1

22 )1,m−1, and (C−1
22 )m−1,m−1 (4.1)

since A13 and Q33 are known.
First we note that C22 defined in (3.5) is the (m− 1)k× (m− 1)k principal submatrix

of Q in (1.2). Recall (1.2) – (1.6), and let

H0 = K0 + iωD0 − ω2M0 ∈ Ck×k, H1 = K1 + iωD1 − ω2M1 ∈ Ck×k. (4.2)
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It follows from (1.2) that

C22 =



k k k ... k

k H0 HT
1

k H1 H0 HT
1

k H1
. . .

. . .
...

. . .
. . . HT

1

k H1 H0

, (4.3)

an (m− 1)× (m− 1) block tridiagonal matrix. To compute the three blocks in (4.1), we
use the qr decomposition of C22 with the q-factor stored in its factor form, as in [7]. It
goes as follows.

1. Initially (step j = 1), perform the qr decomposition

[
H0

H1

]
= Û1 ×

[ k

k R11

k 0

]
,

where Û1 ∈ C2k×2k is unitary and R11 is upper triangular, and set

[ k k

k R12 R13

k R̂22 R̂23

]
= ÛH

1

[
HT

1 0
H0 HT

1

]
.

It can be verified that

UH
1 C22 =


R11 R12 R13

R̂22 R̂23

H1
. . .

. . .
. . .

. . . HT
1

H1 H0

 with U1 = diag(Û1, I(m−3)k). (4.4)

2. At the beginning of step j (j ≥ 2), we have computed

UH
j−1 · · ·UH

2 UH
1 C22 =



R11 R12 R13

R22 R23 R24

. . .
. . .

. . .

R̂jj R̂j,j+1

H1
. . .

. . .
. . .

. . . HT
1

H1 H0


, (4.5)

where for 1 ≤ i ≤ j − 1

Ui = diag(I(i−1)k, Ûi, I(m−i−2)k) (4.6)
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with Ûi ∈ C2k×2k being unitary. Now perform the qr decomposition

[
R̂jj

H1

]
= Ûj ×

[ k

k Rjj

k 0

]
,

where Ûj ∈ C2k×2k is unitary and Rjj is upper triangular, and set

[ k k

k Rj,j+1 Rj,j+2

k R̂j+1,j+1 R̂j+1,j+2

]
= ÛH

j

[
R̂j,j+1 0
H0 HT

1

]
, for j ≤ m− 3,

[ k

k Rj,j+1

k R̂j+1,j+1

]
= ÛH

j

[
R̂j,j+1

H0

]
, for j = m− 2.

It can be verified that (4.5) remains valid with j − 1 replaced by j.

At the end of this process, we have computed

C22 = UR, (4.7a)

where

U = U1U2 · · ·Um−2, (4.7b)

R =



R11 R12 R13

R22 R23 R24

. . .
. . .

. . .

Rm−3,m−3 Rm−3,m−2 Rm−3,m−1

Rm−2,m−2 Rm−2,m−1

R̂m−1,m−1


, (4.7c)

Ui is as in (4.6), Rii are upper triangular, except that R̂m−1,m−1 is a k×k dense matrix. We
point out that in actual implementation, U should not be explicitly computed but stored
in its factor form by simply storing all Ûj into a 2k-by-2k(m− 2) array, for example.

With (4.7), the three blocks in (4.1) can now be readily computed. Let

E1 =

[
Ik

0(m−2)k×k

]
∈ C(m−1)q, Em−1 =

[
0(m−2)k×k

Ik

]
∈ C(m−1)k.

Note C22 = UR = RTUT since C22 is complex symmetric, and thus

C−1
22 = R−1UH = ŪR−T,

where Ū is its complex conjugate. We have

(C−1
22 )1,1 = ET

1 C
−1
22 E1 = ET

1 R
−1UHE1, (4.8)
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(C−1
22 )1,m−1 = ET

1 C
−1
22 Em−1 = ET

1 ŪR−TEm−1 = ET
1 Ū


0k×k
...

0k×k

R̂−T
m−1,m−1

 , (4.9)

(C−1
22 )m−1,m−1 = ET

m−1C
−1
22 Em−1 = ET

m−1ŪR−TEm−1 = ET
m−1Ū


0k×k
...

0k×k

R̂−T
m−1,m−1

 . (4.10)

So we need

1. ET
1 U , the first block row of U ; The following piece of pseudo-code in MATLAB-like

notation illustrating how it can be computed.

compute Z = ET
1 U :

1 Z = [(ÛH
1 )(1:k,:), 0k×(m−2)k];

2 for j = 2 : m− 2

3 Z(:,(j−1)k+1:(j+1)k) = Z(:,(j−1)k+1:jk) × (ÛH
j )(1:k,:);

4 end for.

2. R̂−T
m−1,m−1; It is also needed in computing ET

1 R
−1 next.

3. ET
1 R

−1, the first block row of R−1; This can be implemented through solving a block
triangular system E1 = ZR, where Z is k × (m− 1)k.

4. the last k × k block of ET
m−1U ; Since

ET
m−1U = ET

m−1U
H
1 UH

2 · · ·UH
m−2 = ET

m−1U
H
m−2,

the last k × k block of ET
m−1U is just the bottom-right k × k submatrix of ÛH

m−2,

i.e., (ÛH
m−2)(k+1:2k,k+1:2k).

4.2 Solve (3.6) by the doubling algorithm

Having computed the three k×k blocks in (4.1), the coefficient matrices for (3.6) are readily
available. We propose to solve (3.6) by applying Algorithm 2.1 in a straightforward way.
For future notation reference, we restate Algorithm 2.1 for (3.6) into Algorithm 4.1.

In [7], it is showed that Algorithm 2.1 produces a convergent sequenceXi that converges
to the stabilizing solution Φ at the rate of [ρ(Φ−1A)]2 as in (2.1). Naturally, we would
expect Algorithm 4.1 also produces a convergent sequence X̃i that converges to the solution

Φ̃ := Φ33 −AT
13 (C

−1
22 )m−1,m−1A13 (4.11)

at likely the same rate, where Φ33 is the bottom-right k × k block of Φ, i.e.,

Φ33 = Φ((m−1)k+1:mk,(m−1)k+1:mk).
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Algorithm 4.1 The doubling algorithm for solving (3.6)

Given Ã, Q̃ = Q̃T ∈ Ck×k, this algorithm computes a solution of (3.6).

1: Ã0 = Ã, X̃0 = Q̃, Ỹ0 = 0.
2: for i = 1, 2, . . . , do
3: Ãi+1 = Ãi(X̃i − Ỹi)

−1Ãi;

4: X̃i+1 = X̃i − Ã
T

i (X̃i − Ỹi)
−1Ãi;

5: Ỹi+1 = Ỹi − Ãi(X̃i − Ỹi)
−1Ã

T

i ;
6: end for
7: return X̃i as the computed solution at convergence.

Lemma 4.1. Φ̃ defined by (4.11) is the stabilizing solution of (3.6) and, moreover,

ρ
(
Φ̃−1Ã

)
= ρ(Φ−1A) < 1.

Proof. Recall, by Theorem 3.1,

Φ =

[ (m−1)k k

(m−1)k C22 C23

k CT
23 Φ33

]
. (4.12)

We note all blocks of A as an m × m block matrix are zeros, except its (1,m)th block
A(1:k,(m−1)k+1:mk) =: A13, where A13 is as defined in (3.1). Thus

Φ−1A =

[ (m−1)k k

(m−1)k 0 · · ·
k 0 (Φ−1)((m−1)k+1:mk,1:k)A13

]
,

where (Φ−1)((m−1)k+1:mk,1:k) is the last k × k block in the first block column of Φ−1. This
implies

ρ(Φ−1A) = ρ((Φ−1)((m−1)k+1:mk,1:k)A13). (4.13)

For the same reason as for (3.9), we have

Φ−1 =

[
C−1
22 + C−1

22 C23Ĉ
−1
22 CT

23C
−1
22 −C−1

22 C23Ĉ
−1
22

−Ĉ−1
22 CT

23C
−1
22 Ĉ−1

22

]
,

where Ĉ22 = Φ33 −A13 (C
−1
22 )m−1,m−1A

T
13 by (3.10). Therefore

(Φ−1)((m−1)k+1:mk,1:k) = −Ĉ−1
22 (CT

23C
−1
22 )1,1

= −[Φ33 −A13 (C
−1
22 )m−1,m−1A

T
13]

−1A13(C
−1
22 )m−1,1,

(Φ−1)((m−1)k+1:mk,1:k)A13 = −[Φ33 −A13 (C
−1
22 )m−1,m−1A

T
13]

−1A13(C
−1
22 )m−1,1A13

= −[Φ33 −A13 (C
−1
22 )m−1,m−1A

T
13]

−1Ã

= −Φ̃−1Ã.

Therefore, ρ
(
Φ̃−1Ã

)
= ρ((Φ−1)((m−1)k+1:mk,1:k)A13) = ρ(Φ−1A) < 1 by (4.13), i.e., Φ̃ is

the stabilizing solution of (3.6).
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We now show that Algorithm 4.1 will not break down, and X̃i converges quadrati-
cally to the stabilizing solution Φ̃ of (3.6) under certain nonsingularity assumption. Let
Ti(X,Z, Y ) be i× i block tridiagonal Toeplitz matrix

Ti(X,Z, Y ) :=


Z X
Y Z X

. . .
. . .

. . .

Y Z X
Y Z

 ∈ Cik×ik,

defined for any given X, Y, Z ∈ Ck×k. In particular, T1(X,Z, Y ) = Z. The complemen-
tary equation of (3.6) is

Ỹ + ÃỸ −1Ã
T
= Q̃. (4.14)

Theorem 4.1. Let Ã and Q̃ be given by (3.7b) and (3.7c). Let Φ̃ be the stabilizing solution
of (3.6) and Ψ̃ be the stabilizing solution of the complementary equation (4.14). Suppose

T2ℓ−1(−Ã
T
, Q̃,−Ã) is invertible for all ℓ ≥ 1. Then

(a) The sequences
{
Ãi

}
,
{
X̃i

}
,
{
Ỹi
}
in Algorithm 4.1 are well-defined, and X̃i and Ỹi

are complex symmetric;

(b) X̃i converges to Φ̃ quadratically, Ãi converges to 0 quadratically, and Q̃−Ỹi converges
to Ψ̃ quadratically. Moreover,

lim sup
i→∞

2i
√

∥X̃i − Φ̃∥ ≤ [ρ
(
Φ̃−1Ã

)
]2, lim sup

i→∞

2i
√

∥Ãi∥ ≤ ρ
(
Φ̃−1Ã

)
,

lim sup
i→∞

2i
√

∥Q̃− Ỹi − Ψ̃∥ ≤ [ρ
(
Φ̃−1Ã

)
]2,

where ∥ · ∥ is any matrix norm.

Proof. Let Zi = X̃i − Ỹi. Then the sequence {Zi} satisfies

Zi+1 = Zi − Ã
T

i Z
−1
i Ãi − ÃiZ

−1
i Ã

T

i (4.15)

with Z0 = Q̃. Similarly to [2, Theorem 13 and also (9)], we can prove that Zi is nonsingular
for all i ≥ 0. In fact, we will prove a stronger statement:

T2ℓ−1(−Ã
T

i , Zi,−Ãi) for all i ≥ 0 and ℓ ≥ 1 are nonsingular. (4.16)

It is stronger than Zi being nonsingular for all i because Zi = T2ℓ−1(−Ã
T

i , Zi,−Ãi) for
ℓ = 1. We proceed by induction on i. By the assumption of the theorem,

T2ℓ−1(−Ã
T

0 , Z0,−Ã0) = T2ℓ−1(−Ã
T
, Q̃,−Ã) for all ℓ ≥ 0

are nonsingular. The statement (4.16) holds for i = 0.

12



Suppose it holds for i. We now prove it must hold for i+ 1, i.e.,

T2ℓ−1(−Ã
T

i+1, Zi+1,−Ãi+1) for all ℓ ≥ 1 are nonsingular. (4.17)

To this end, for any given matrix X and Y , we introduce the following notations: Dj(X) =
diag(X, . . . ,X︸ ︷︷ ︸

j

), Lj(X,Y ) is the (j + 1)× j block lower bidiagonal matrix with X on the

main-diagonal and Y on the sub-diagonal, and Uj(X,Y ) is the j × (j + 1) block upper
bidiagonal matrix with X on the main diagonal and Y on the sup-diagonal.

Applying the even-odd block row-and-column permutation

[1, 3, . . . , 2ℓ+1 − 1, 2, 4, . . . , 2ℓ+1 − 2]

to T2ℓ+1−1(−Ã
T

i , Zi,−Ãi) yields[
D2ℓ(Zi) L2ℓ−1(−Ã

T

i ,−Ãi)

U2ℓ−1(−Ãi,−Ã
T

i ) D2ℓ−1(Zi)

]
.

The Schur complement of D2ℓ(Zi), obtained by one step of block Gaussian elimination on
this matrix, is

D2ℓ−1(Zi)− U2ℓ−1(−Ãi,−Ã
T

i )D2ℓ(Z
−1
i )L2ℓ−1(−Ã

T

i ,−Ãi)

=

Zi

. . .

Zi

−


−Ãi −Ã

T

i

. . .
. . .

−Ãi −Ã
T

i


Z

−1
i

. . .

Z−1
i



−Ã

T

i

−Ãi
. . .

. . . −Ã
T

i

−Ãi



=



Zi+1 −Ã
T

i Z
−1
i Ã

T

i

−ÃiZ
−1
i Ãi Zi+1 −Ã

T

i Z
−1
i Ã

T

i

. . .
. . .

. . .

−ÃiZ
−1
i Ãi Zi+1 −Ã

T

i Z
−1
i Ã

T

i

−ÃiZ
−1
i Ãi Zi+1


which is T2ℓ−1(−Ã

T

i+1, Zi+1,−Ãi+1) and must be nonsingular because, by the inductive

assumption, both T2ℓ+1−1(−Ã
T

i , Zi,−Ãi) and D2ℓ(Zi) are nonsingular. So (4.17) holds,
i.e., (4.16) holds for i+ 1. This completes the inductive proof.

It is evident that
{
X̃i

}
and

{
Ỹi
}
are complex symmetric since Q̃ is complex symmetric.

This proves item (a).
We now prove item (b). It can be verified that

N0

[
I

Φ̃

]
= L0

[
I

Φ̃

]
Φ̃−1Ã with N0 =

[
Ã 0

Q̃ −I

]
, L0 =

[
0 I

Ã
T

0

]
. (4.18)

Define the sequences {Ni} and {Li} by

Ni =

[
Ãi 0

X̃i −I

]
, Li =

[
−Ỹi I

Ã
T

i 0

]
. (4.19)
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By the arguments in [3], we have for each i ≥ 0

Ni

[
I

Φ̃

]
= Li

[
I

Φ̃

] (
Φ̃−1Ã

)2i
. (4.20)

Substituting (4.19) into (4.20) yields

Ãi = (Φ̃− Ỹi)
(
Φ̃−1Ã

)2i
, X̃i − Φ̃ = Ã

T

i

(
Φ̃−1Ã

)2i
. (4.21)

Similarly we have

N̂0

[
I

Ψ̃

]
= L̂0

[
I

Ψ̃

]
Ψ̃−1Ã

T
with N̂0 =

[
Ã

T
0

Q̃ −I

]
, L̂0 =

[
0 I

Ã 0

]
.

The pencil N̂0−λL̂0 is a linearization of λ2Ã−λQ̃+ Ã
T
, which has the same eigenvalues

as λ2Ã
T
− λQ̃+ Ã. Thus Ψ̃−1Ã

T
and Φ̃−1Ã have the same eigenvalues, and hence

ρ
(
Ψ̃−1Ã

T)
= ρ

(
Φ̃−1Ã

)
.

Run Algorithm 4.1 with the inputs Ã
T
and Q̃ to yield new Ã-, X̃-, and Ỹ -sequences which

we denote by Âi, X̂i, and Ŷi, respectively. It can be verified (by induction, for example)
that

Âi = Ã
T

i , Ŷi = Q̃− X̃i, X̂i = Q̃− Ỹi. (4.22)

Indeed, the relations in (4.22) are true for i = 0. Assuming (4.22) for i, we have

X̂i+1 = X̂i − Â
T

i (X̂i − Ŷi)
−1Âi

= Q̃− Ỹi − Ãi(X̃i − Ỹi)
−1Ã

T

i

= Q̃− Ỹi+1,

and similarly we have Âi+1 = Ã
T

i+1 and Ŷi+1 = Q̃− X̃i+1. Define the sequences
{
N̂i

}
and{

L̂i

}
by

N̂i =

[
Âi 0

X̂i −I

]
, L̂i =

[
−Ŷi I

Â
T

i 0

]
.

Then for each i ≥ 0

N̂i

[
I

Ψ̃

]
= L̂i

[
I

Ψ̃

] (
Ψ̃−1Ã

T)2i
. (4.23)

By (4.23) and (4.22), we have

Ã
T

i = (Ψ̃ − Ŷi)
(
Ψ̃−1Ã

T)2i
, X̂i − Ψ̃ = Ãi

(
Ψ̃−1Ã

T)2i
. (4.24)

By (4.21), (4.24) and (4.22), we have

X̃i − Φ̃ = Ã
T

i

(
Φ̃−1Ã

)2i
14



= (Ψ̃ − Ŷi)
(
Ψ̃−1Ã

T)2i(
Φ̃−1Ã

)2i
=

[
X̃i − Φ̃+ (Φ̃+ Ψ̃ − Q̃)

](
Ψ̃−1Ã

T)2i(
Φ̃−1Ã

)2i
from which we conclude

(X̃i − Φ̃)
[
I −

(
Ψ̃−1Ã

T)2i(
Φ̃−1Ã

)2i]
= (Φ̃+ Ψ̃ − Q̃)

(
Ψ̃−1Ã

T)2i(
Φ̃−1Ã

)2i
.

It follows that

lim sup
i→∞

2i
√
∥X̃i − Φ̃∥ ≤ ρ

(
Ψ̃−1Ã

T)
ρ
(
Φ̃−1Ã

)
= [ρ

(
Φ̃−1Ã

)
]2 < 1.

So X̃i converges to Φ̃ quadratically. Then by (4.22), we know Ŷi is uniformly bounded in
i and thus by the first equation in (4.24)

lim sup
i→∞

2i
√

∥Ãi∥ ≤ ρ
(
Φ̃−1Ã

)
< 1,

i.e., Ãi converges to 0 quadratically. By the second equation in(4.24) and (4.22), we get

lim sup
i→∞

2i
√

∥Q̃− Ỹi − Ψ̃∥ ≤ [ρ
(
Φ̃−1Ã

)
]2 < 1,

i.e., Q̃− Ỹi converges to Ψ̃ quadratically. This completes the proof of item (b).

Because of the quadratic convergence claim in this theorem, we can use (2.3) with Xi

and Xi+1 replaced by X̃i and X̃i+1, respectively, as the stopping criteria for Algorithm 4.1.
For our numerical test in the next section, the spectral norm ∥ · ∥2 is used.

4.3 Solve the eigenvalue problem for P (λ)

At this point, we have recovered the stabilizing solution Φ for (1.7) through solving (3.6)
by Algorithm 4.1. The PQEP (1.1) arising from the vibration analysis of high speed trains
is now transformed to the eigenvalue problems for λAT + Φ and λΦ+A.

Recall (4.12) and C22 = UR in (4.7). We have[
U

Ik

]H
Φ =

[
R UHC23

0k×(m−2)k H1 Φ33

]
and notice UHC23 = UH

m−2C23. Now similarly to what we did in subsection 4.1, we

find a unitary matrix Um−1 = diag(I(m−2)k, Ûm−1) so that UH
m−1 diag(UH, Ik)Φ is block

upper triangular, where Ûm−1 ∈ C2k×2k. On the other hand, only the last k columns of
UH
m−1 diag(UH, Ik)A are possibly nonzero. Thus the eigenvalue problem for λΦ + A is

reduced to the one for λZ1 + Z2, where Z1 and Z2 are the right-bottom k × k blocks of
UH
m−1 diag(UH, Ik)Φ and UH

m−1 diag(UH, Ik)A, respectively. The rest, i.e., recovering the
eigenvectors for (1.1) from those of the k×k eigenvalue problem for λZ1+Z2, is the same
as in [7]. We omit the rest of the detail.
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Table 5.1: Comparison of cost (m ≥ 2)

before DA iteration each DA iteration finding eigenpairs

sda gl 113
3 mk3 154

3 k3 14mk3

sda lyl 113
3 (m− 1)k3 32

3 k
3 14mk3 + 86

3 k
3

5 Numerical experiments

For the comparison purpose, we will identify our implementation as sda lyl and the one
in [7] as sda gl. Since sda gl has been shown in [7] to have much better accuracy than
earlier existing methods, we will only compare ours to sda gl.

We begin by estimating the flop counts for sda lyl. The qr decomposition of C22

requires about 86
3 (m − 1)k3 flops; computing the three blocks in (4.1) require 4k3 and

(9m − 5)k3; each iteration of the doubling algorithm for (3.6) requires about 8k3 flops;
recovering Φ and finding all eigenpairs requires about 14mk3 + 86

3 k
3 flops. Table 5.1

summarizes the flop counts for sda lyl as well as those for sda gl taken from [7]. It
is evident that the save in our new implementation comes from solving (3.6) which is of
k×k instead of (1.7) which is of mk×mk. In fact, as far as solving (3.6) and (1.7) by the
doubling algorithm is concerned, ours on (3.6) is 154/32 = 4.8 times faster than theirs on
(1.7). But overall, while sda lyl is always faster, its speed potential gradually drops as
m increases. In fact, according to Table 5.1, the flops ratio is

sda gl

sda lyl
=

165m+ 154ℓ

165m+ 32ℓ− 27
, (5.1)

assuming the doubling algorithm takes ℓ iterative steps to finish. It decreases as m in-
creases. For example, with ℓ = 10, the ratio (5.1) is 3.00 at m = 2 and decreases to 1.14
at m = 50.

Numerically, we tested sda gl and sda lyl on three sets of test data4, generated by
a finite element method, with

(k,m) = (159, 11), (303, 19), (705, 51), (5.2)

respectively. The matrices Q = Kt+ ιωDt−ω2Mt and A = Kc+ ιωDc−ω2Mc, where Mt,
Mc, Kt and Kc are as in (1.4) – (1.6), and ω > 0. All numerical experiments are carried
out within MATLAB 7.0 with machine unit roundoff 2−52 ≈ 2.22× 10−16.

In all cases, the doubling algorithm on (3.6) shows rapid convergence, as expected,
because in theory the doubling algorithm on (1.7) and on the transformed (3.6) has the
same rate of convergence. Table 5.2 displays the spectral radiuses

ρ = ρ(Φ−1A) = ρ(Φ̃−1Ã)

for the three pairs of (k,m) in (5.2) and for

ω = 100, 1000, 3000, 5000,

4We thank Prof. Wen-Wei Lin of National Chiao Tung University, Taiwan and Prof. Tiexiang Li of
Southeast University, China for generously providing us with the data and their code.
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Figure 5.1: ∥X̃i+1 − X̃i∥2/∥X̃i∥2 for (k,m) = (159, 11) (left plot) and (705, 51) (right plot)

Table 5.2: ρ = ρ(Φ−1A) = ρ(Φ̃−1Ã)

(k,m) \ ω 100 1000 3000 5000

(159, 11) 0.9593 0.8745 0.7925 0.7406

(303, 19) 0.9307 0.7933 0.6692 0.5953

(705, 51) 0.9622 0.8831 0.8060 0.7569

respectively. For illustrating the convergence history of the doubling algorithm, Figure 5.1
plots the ratio

∥X̃i+1 − X̃i∥2
∥X̃i∥2

, (5.3)

where X̃i is defined by Algorithm 4.1 for the first and last pair of (k,m) in (5.2). What we
can see from the figure is that in no more than 10 doubling iterations, this ratio reaches
O(10−16) or much less. There is no significant difference in the numbers of doubling
iterations for different values of (k,m), but for the larger ω, ρ becomes much smaller and
consequently fewer doubling iterations are recorded.

Lastly, we assess accuracies of an approximate eigenpair (λ, z) of P (λ) by the relative
residual

RRes :=
∥λ2ATz + λQz +Az∥2

(|λ|2∥A∥F + |λ|∥Q∥F + ∥A∥F)∥z∥2
(5.4)

as in [7], where ∥ · ∥F is the Frobenius norm. As in Figure 5.1, we use the first and last
pair of (k,m) in (5.2) as examples and also for ω = 1000 only. We plot this RRes for all
approximate eigenpairs of P (λ) in Figure 5.2. These RRes for sda lyl and sda gl are
indistinguishable.
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Figure 5.2: RRes for approximate eigenpairs when (k,m) = (159, 11) (left plot) and
(705, 51) (right plot)

6 Concluding remarks

We have presented a numerical method to solve the palindromic quadratic eigenvalue
problem (1.1) arising from the vibration analysis of high speed trains [4, 7, 14]. The
method is based on the Guo-Lin method [7] but with an improvement in the part of the
application of the doubling algorithm: we solve a k × k nonlinear matrix equation (3.6)
while Guo and Lin solved an mk × mk nonlinear matrix equation (1.7). Despite their
clever effort in exploiting the structures in A and Q, each doubling iteration in [7] is about
4.8 times as expensive as here for large k.

Numerical tests suggest that the quality of computed eigenpairs of P (λ) by either the
original Guo-Lin method and its improved version here is about the same.

So far, we have focused on PQEP (1.1) from the vibration analysis of high speed trains.
The idea here, as well as the one in [7], is easily carried over to the case that Q is block
tridiagonal but not necessarily block Toeplitz, provided that P (λ) has no eigenvalues on
the the unit circle and Algorithm 4.1 does not breakdown, i.e., all inverses exist. Other
extensions are conceivably possible. We omit the detail.
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