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Abstract

The numerical solution of a large scale linear response eigenvalue problem is often
accomplished by computing a pair of deflating subspaces associated with the inter-
ested part of the spectrum. This paper is concerned with the backward perturbation
analysis for a given pair of approximate deflating subspaces or an approximate eigen-
quaternary. Various optimal backward perturbation bounds are obtained, as well as
bounds for approximate eigenvalues computed through the pair of approximate de-
flating subspaces or approximate eigen-quaternary. These results are reminiscent of
many existing classical ones for the standard eigenvalue problem.
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1 Introduction

In this paper, we are concerned with a backward perturbation analysis and residual-based
error bounds for the Linear Response Eigenvalue Problem (LREP):

Hzzz :=

[
K

M

] [
yyy
xxx

]
= λ

[
yyy
xxx

]
=: λzzz, (1.1)
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where K and M are both n-by-n real symmetric and positive definite. The matrix H
in (1.1) is a special Hamiltonian matrix whose eigenvalues are real [1] and come in pairs
{λ,−λ}. Therefore, we can order the 2n eigenvalues of (1.1) as

−λn ≤ · · · ≤ −λ1 < λ1 ≤ · · · ≤ λn. (1.2)

LREP (1.1) is mathematically equivalent to the so-called random phase approximation
(RPA) eigenvalue problem in computational quantum chemistry and physics:[

A B
−B −A

] [
uuu
vvv

]
= λ

[
uuu
vvv

]
, (1.3)

where A,B ∈ Rn×n are both symmetric matrices and

[
A B
B A

]
is positive definite. The

equivalent relationship is established through the orthogonal matrix J = 1√
2

[
In In
In −In

]
and the similarity transformation (see, e.g., [1, 2])

JT

[
A B
−B −A

]
J =

[
A−B

A+B

]
=:

[
K

M

]
, and

[
yyy
xxx

]
:= JT

[
uuu
vvv

]
. (1.4)

RPA is one of the most widely used methods in studying the excitation states (energies)
of physical systems in the study of collective motion of many-particle systems [1, 30, 31]
which has applications in silicon nanoparticles, nanoscale materials, analysis of interstellar
clouds [1, 2], among others. The heart of RPA calculations is to compute a few eigenpairs
associated with the smallest positive eigenvalues, which, by the equivalent relationship
(1.4) , are the eigenpairs associated with the eigenvalues λ1 ≤ · · · ≤ λk of (1.1).

As the dimension n is usually very large, LREP is generally solved by iterative meth-
ods. Roughly speaking, any large scale eigenvalue computation is about approximating
certain invariant subspaces associated with the interested part of the spectrum, and the
interested eigenvalues are then extracted from projecting the problem by approximate
invariant subspaces into much smaller eigenvalue problems. In the case of the linear re-
sponse eigenvalue problem, it is the pair of deflating subspaces associated with the first
few smallest positive eigenvalues that needs to be computed [2].

For two k-dimensional subspaces U and V in Rn, we call {U,V} a pair of deflating
subspaces of {K,M} if

KU ⊆ V and MV ⊆ U. (1.5)

This notion of the pair of deflating subspaces is a generalization of the concept of the
invariant subspace (or, eigenspace) in the standard eigenvalue problem upon considering
the special structure in LREP (1.1) [1]. Whenever such a pair of deflating subspaces is
available, we can project LREP (1.1) into a much smaller problem in the form of (1.1),
an LREP by its own, whose spectrum are a part of that of H (see more discussions in
section 2 and [1, 2]). Based on this fact, several efficient algorithms, including the Locally
Optimal Block Preconditioned 4D Conjugate Gradient Method (LOBP4DCG) [2], the
block Chebyshev-Davidson method [29], as well as the generalized Lanczos method [28,
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32, 33], have been proposed. Each of these algorithms generates a sequence of approximate
deflating subspace pairs that hopefully converge to or contain subspaces near the pair of
deflating subspaces. The goal of this paper is to perform a backward perturbation analysis
and to establish error bounds on the accuracy (in eigenvalue/eigenspace approximations)
using proper residuals associated with any given approximate deflating subspace pair.

A related study is presented in [34]. The main difference among the results in [34]
and those in the present paper is that the error bounds on eigenvalue/eigenspace ap-
proximations in [34] are characterized by the canonical angles between the approximate
deflating subspace pair and the exact pair, whereas the error bounds in this paper use
certain computable residuals. These two types of error bounds are well-established in the
standard eigenvalue problem (see, e.g., [20, 22]), and both types are useful for analyzing
the convergence and designing stopping criteria for iterative algorithms.

The rest of the paper is organized as follows. In section 2, we will state some basic
properties about LREP for use later. Section 3 gives a backward perturbation analysis
for a given pair of approximate deflating subspaces or an approximate eigen-quaternary,
optimizes backward perturbation errors, and shows the near optimality of the so-called
Rayleigh quotient pair. Section 4 derives several error bounds in terms of residuals on
eigenvalue approximations. In section 5, we review related results for the standard eigen-
value problem as a comparison. Finally in section 6, we present our concluding remarks.

Notation. Kn×m is the set of all n × m matrices whose entries belong to the number
field K, Kn = Kn×1, and K = K1, where K = R (the set of real numbers) or C (the set of
complex numbers). In (or simply I if its dimension is clear from the context) denotes the
n × n identity matrix. All vectors are column vectors and are in boldface. For a matrix
Z,

1. ZT and ZH denote its transpose and the conjugate transpose, respectively,

2. R(Z) is Z’s column space, spanned by its column vectors,

3. Z† stands for the Moore-Penrose inverse and PZ = ZZ† is the orthogonal projection
onto R(Z) and P⊥

Z = I − PZ = Z†Z [22],

4. ∥Z∥2, ∥Z∥F, and ∥Z∥ui are the spectral norm, the Frobenius norm, and a general
unitarily invariant norm, respectively,

5. Z’s submatrices Z(k:ℓ,i:j), Z(k:ℓ,:), and Z(:,i:j) consist of intersections of row k to row
ℓ and column i to column j, row k to row ℓ, and column i to column j, respectively,

6. when Z is a square matrix, its trace is trace(Z) and its eigenvalue set is eig(Z).

The assignments in (1.1) will be assumed, namely H is always defined that way for given
K, M ∈ Rn×n which are assumed by default to be symmetric positive semi-definite and
one of which is definite, unless explicitly stated differently.
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2 Preliminaries

Many theoretical properties of LREP have been established in [1, 2]. In Theorem 2.1, we
present certain decompositions on K and M , necessary for our developments later in this
paper. The reader is referred to [1, section 2] for proofs and more.

Theorem 2.1. Suppose that K is semidefinite and M is definite. Then the following
statements are true:

(i) There exists a nonsingular Φ ∈ Rn×n such that

K = ΨΛ2ΨT and M = ΦΦT, (2.1)

where Λ = diag(λ1, λ2, . . . , λn), λi are as in (1.2), and Ψ = Φ−T.

(ii) If K is also definite, then all λi > 0 and H is diagonalizable:

H

[
ΨΛ ΨΛ
Φ −Φ

]
=

[
ΨΛ ΨΛ
Φ −Φ

] [
Λ

−Λ

]
. (2.2)

As we have introduced in section 1, for two given k-dimensional subspaces U ⊆ Rn and
V ⊆ Rn, the pair {U,V} is called a pair of deflating subspaces of {K,M} if

KU ⊆ V and MV ⊆ U (1.5)

hold. This definition is essentially the same as the existing ones for the product eigenvalue
problem [3, 7, 18, 19]. Let U ∈ Rn×k and V ∈ Rn×k be the basis matrices for U and
V, respectively. Alternatively, (1.5) can be restated as that there exist KR ∈ Rk×k and
MR ∈ Rk×k such that

KU = V KR and MV = UMR (2.3)

and vice versa, or equivalently,

H

[
V

U

]
=

[
V

U

]
HR with HR :=

[
KR

MR

]
,

i.e., V ⊕ U is an invariant subspace of H [1, Theorem 2.4]. We call {U, V,KR,MR} an
eigen-quaternary of {K,M}.

Whenever a pair of deflating subspaces {R(U),R(V )} is at hand, a part of the eigen-
pairs of H can be obtained via solving the smaller eigenvalue problem [1, Theorem 2.5]:
if

HRẑzz :=

[
KR

MR

] [
ŷyy
x̂xx

]
= λ

[
ŷyy
x̂xx

]
=: λẑzz, (2.4)

then (λ,

[
V ŷyy
Ux̂xx

]
) is an eigenpair of H. The matrix HR is the restriction of H onto V ⊕ U

with respect to the basis matrices V ⊕ U . Moreover, the eigenvalues of HR are uniquely
determined by the pair of deflating subspaces {U,V}; in the other word, different choices
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of the basis matrices for {U,V} result in the same eigenvalues. In fact, if Û = UD1 ∈ Rn×k

and V̂ = V D2 ∈ Rn×k are new basis matrices for R(U) and R(V ), respectively, and

KÛ = V̂ K̂R and MV̂ = ÛM̂R, (2.5)

then K̂R = D−1
2 KRD1 and M̂R = D−1

1 KRD2 by comparing (2.3) to (2.5) after substituting

in Û = UD1 and V̂ = V D2. Thus

ĤR :=

[
K̂R

M̂R

]
=

[
D2

D1

]−1

HR

[
D2

D1

]
. (2.6)

Evidently ĤR and HR must have the same eigenvalues.
Two particular choices of {KR,MR} to satisfy (2.3) are

KR = (UTV )−1UTKU, MR = (V TU)−1V TMV ; (2.7a)

KR = (V TV )−1V TKU, MR = (UTU)−1UTMV. (2.7b)

In (2.7a), it is assumed UTV is invertible, which is guaranteed if one of K and M is
definite [1, Lemma 2.7]. By what we just proved, the associated HR with either (2.7a) or
(2.7b) must have the same eigenvalues.

In practical computations, however, {U,V} is usually a pair of approximate deflating
spaces, i.e., no {KR,MR} that satisfies (2.3) exists. Dependent on how good {U,V} is as
a pair of approximate deflating spaces, the equations in (2.3) is satisfied approximately
to an appropriate level for some {KR,MR} like the ones given in (2.7). In particular,
{KR,MR} by (2.7a) relates to the structure-preserving projectionHSR ofH in [2, (2.2)] that
plays an important role numerically there. To highlight this particular pair, we will call
{KR,MR} by (2.7a) a Rayleigh quotient pair of LREP (1.1) associated with {R(U),R(V )}
and introduce

KRQ := (UTV )−1UTKU, MRQ := (V TU)−1V TMV (2.8)

for the ease of future references. Both KRQ and MRQ vary with different selections of U
and V as the basis matrices of R(U) and R(V ), respectively. But the eigenvalues of the
induced

HRQ =

[
KRQ

MRQ

]
. (2.9)

do not. In fact, with new basis matrices Û = UD1 and V̂ = V D2 and, accordingly, new
K̂RQ and M̂RQ, ĤRQ is similar to HRQ (an equation like (2.6) holds).

For the definition and properties of unitarily invariant norms, the reader is referred to
[4, 22] for details. In this article, for convenience, any ∥ · ∥ui we use is generic to matrix
sizes in the sense that it applies to matrices of all sizes. Examples include the matrix
spectral norm ∥ · ∥2 and the Frobenius norm ∥ · ∥F. Two important properties of unitarily
invariant norms are

∥X∥2 ≤ ∥X∥ui, ∥XY Z∥ui ≤ ∥X∥2 · ∥Y ∥ui · ∥Z∥2 (2.10)

for any matrices X, Y , and Z of compatible sizes.
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3 Backward Errors and Optimal Residuals

Let U ⊆ Rn and V ⊆ Rn be two k-dimensional subspaces, and let U ∈ Rn×k and V ∈ Rn×k

be the basis matrices for U and V, respectively. As discussed in section 2, {U,V} is a pair
of deflating subspaces of {K,M} if and only if the equations in (2.3) holds for some
KR ∈ Rk×k and MR ∈ Rk×k. In this case, {U, V,KR,MR} is an eigen-quaternary.

But in practice, {U,V} is likely a pair of approximate deflating subspaces in the sense
that the residuals

RK(KR) := KU − V KR, RM (MR) := MV − UMR (3.1)

are tiny in norm for some KR ∈ Rk×k and MR ∈ Rk×k. In this case, {U, V,KR,MR} is an
approximate eigen-quaternary. Set

HR =

[
KR

MR

]
, (3.2)

associated with suchKR andMR. Different from {U,V} being exact, now eig(HR) ̸⊂ eig(H)
but hopefully some or all eigenvalues of HR are good approximations to some eigenvalues
of H. Naturally if

HRẑzz :=

[
KR

MR

] [
ŷyy
x̂xx

]
= λ

[
ŷyy
x̂xx

]
=: λẑzz,

we may take (λ,

[
V ŷyy
Ux̂xx

]
) as an approximate eigenpair of H [1, 2] in view of our discussions

in the previous section.
In this section, we are interested in answering the following three questions:

1. Given an approximate eigen-quaternary, what are the smallest symmetric pertur-
bations ∆K and ∆M (to K and M , respectively) in norm such that the given
eigen-quaternary is an exact eigen-quaternary of {K +∆K,M +∆M}?

2. Given a pair of approximate deflating subspaces {U,V}, what are the smallest resid-
uals RK(KR) and RM (MR) in norm optimizing among all possible KR and MR?

3. It turns out that the so-called Rayleigh quotient pair {KRQ,MRQ} is not the one that
minimizes RK(KR) and RM (MR) in norm. But how far are KRQ and MRQ from their
optimal counterparts?

3.1 Optimal Backward Errors

In this subsection, we shall investigate the first question raised at the beginning of the
section.

Throughout this subsection, {U, V,KR,MR} is assumed an approximate eigen-quaternary
of {K,M} with U, V ∈ Rn×k satisfying

UTU = V TV = Ik, and rank(UTV ) = k, (3.3)
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KR,MR ∈ Rk×k. Define RK(KR) and RM (MR) by (3.1), HR as in (3.2), and

SK := (UTV )KR, SM := (V TU)MR. (3.4)

Lemma 3.1. Factorize UTV as UTV = WT
1 W2, where Wi ∈ Rk×k are nonsingular. Then

HR = [W2 ⊕W1]
−1

[
0 W−T

1 SKW−1
1

W−T
2 SMW−1

2 0

]
[W2 ⊕W1]. (3.5)

In the case when {U, V,KR,MR} is an exact eigen-quaternary of {K,M},

SK = UTKU, SM = V TMV. (3.6)

Proof. The equation (3.5) can be verified straightforwardly after substituting in SK and
SM as given by (3.4). When {U, V,KR,MR} is exact, we can take KR and MR as in (2.7a).
Now use (3.4) to see (3.6).

Perturbations ∆K and ∆M (to K and M , respectively) such that the given eigen-
quaternary {U, V,KR,MR} is an exact eigen-quaternary of {K +∆K,M +∆M} are the
ones that satisfy

(K +∆K)U = V KR, (M +∆M)V = UMR. (3.7)

Since K and M are symmetric, we further restrict ∆K and ∆M to be symmetric, too.
The first and foremost question is, naturally, if such perturbations ∆K and ∆M exist,
and then if they do, what the smallest perturbations in norm are. For this purpose, we
define

L :=
{
(∆K,∆M) : ∆KT = ∆K ∈ Rn×n,∆MT = ∆M ∈ Rn×n satisfying (3.7)

}
, (3.8)

and investigate when L ̸= ∅.

Lemma 3.2 ([25, Lemma 1.4]). Given Z1, Z2 ∈ Cn×k, define

S = {S ∈ Cn×n : SH = S, SZ1 = Z2}.

1. S ̸= ∅ if and only if Z1 and Z2 satisfy

Z2PZH
1
= Z2 and (PZ1Z2Z

†
1)

H = PZ1Z2Z
†
1.

2. In the case of S ̸= ∅, any S ∈ S can be expressed by

S = Z2Z
†
1 + (Z†

1)
HZH

2 − (Z†
1)

HZH
2 PZ1 + P⊥

Z1
TP⊥

Z1
,

where T ∈ Cn×n is Hermitian and arbitrary. Moreover,

Sopt = Z2Z
†
1 + (Z†

1)
HZH

2 − (Z†
1)

HZH
2 PZ†

1
∈ S

is the unique matrix such that

∥Sopt∥F = min
S∈S

∥S∥F.
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Applying Lemma 3.2, we have

Lemma 3.3. Given approximate eigen-quaternary {U, V,KR,MR} satisfying (3.3), L ̸= ∅
if and only if SK and SM are symmetric.

Proof. We first apply Lemma 3.2 with

S = ∆K, Z1 = U, Z2 = KU − V KR.

Notice PZH
1
= UTU = I and

PZ1Z2Z
†
1 = UUT(V KR −KU)UT = U [(UTV )KR︸ ︷︷ ︸

SK

−UTKU ]UT

to conclude that ∆K exists if and only if SK is symmetric, as was to be shown. Next we
apply Lemma 3.2 again but with S = ∆M , Z1 = V , and Z2 = MV − UMR.

As we pointed out in section 2, for any given pair of deflating subspaces, the associated
{KR,MR} may be expressed in different ways, e.g., the ones in (2.7a) and (2.7b). Now, by
Lemma 3.3, it becomes clear that (2.7a) is a good choice because it ensures that L ̸= ∅.

In the case of L ̸= ∅, we define the optimal backward error by

ζ(U, V,KR,MR) := min
(∆K,∆M)∈L

(∥∆K∥ui + ∥∆M∥ui), (3.9)

given a unitarily invariant norm ∥·∥ui. For any particular unitarily invariant norm, we will
attach a suggestive subscript to ζ to indicate the norm used, e.g., ζ2(U, V,KR,MR) and
ζF(U, V,KR,MR) defined under the spectral norm and the Frobenius norm, respectively.

Theorem 3.1. Suppose SK and SM defined by (3.4) are symmetric. Then

ζF(U, V,KR,MR) =
√

2∥RK(KR)∥2F − ∥UTRK(KR)∥2F

+
√
2∥RM (MR)∥2F − ∥V TRM (MR)∥2F, (3.10)

ζ2(U, V,KR,MR) = ∥RK(KR)∥2 + ∥RM (MR)∥2, (3.11)

and for a general unitarily invariant norm,

∥RK(KR)∥ui+ ∥RM (MR)∥ui ≤ ζ(U, V,KR,MR) ≤ 2
[
∥RK(KR)∥ui+ ∥RM (MR)∥ui

]
. (3.12)

Proof. Note that the minimization for ζ(U, V,KR,MR) can be separated into the K-part
and M -part. For the Frobenius norm, we can apply directly Lemma 3.2 with Z1 = U and
Z2 = RK(KR) to get the optimal ∆K as

∆Kopt(KR) = RK(KR)U
T + [RK(KR)]

TU − U [RK(KR)]
TUUT, (3.13)

whose Frobenius norm is
√

2∥RK(KR)∥2F − ∥UTRK(KR)∥2F, and similarly for the optimal

∆M in the Frobenius norm.
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Expand U to an orthogonal matrix [U,U⊥] ∈ Rn×n and write

∆K = [U,U⊥]

[
T11 T12

T21 T22

]
[U,U⊥]

T.

Since ∆KU = −RK(KR) by (3.7), we have

[
T11

T21

]
= −

[
UT

UT
⊥

]
RK(KR), and thus

∆K = −[U,U⊥]

[
UTRK(KR) RK(KR)

TU⊥
UT
⊥RK(KR) T22

]
[U,U⊥]

T,

where T22 is symmetric and arbitrary. Therefore

∥∆K∥ui =
∥∥∥∥[UTRK(KR) RK(KR)

TU⊥
UT
⊥RK(KR) T22

]∥∥∥∥
ui

≥
∥∥∥∥[UTRK(KR)

UT
⊥RK(KR)

]∥∥∥∥
ui

= ∥RK(KR)∥ui

for any T22. Setting T22 = 0, we have

∥∆K∥ui ≤
∥∥∥∥[UTRK(KR)

UT
⊥RK(KR)

]∥∥∥∥
ui

+

∥∥∥∥[RK(KR)
TU⊥

0

]∥∥∥∥
ui

≤ 2∥RK(KR)∥ui.

Similar inequalities hold for the optimal ∆M . Together, they yield (3.12).
Finally for the spectral norm, by the dilation theorem of Krěin and Kahan (see, e.g.,

[9, 12] and [27, Theorem 1.2.3]), the optimal ∆Kopt in the sense that ∥∆K∥2 is smallest
as T22 varies among all possible symmetric matrices is

∥∆Kopt∥2 =
∥∥∥∥[UTRK(KR)

UT
⊥RK(KR)

]∥∥∥∥
2

= ∥RK(KR)∥2,

and similarly for the optimal ∆M in the spectral norm.

We remark that the optimal backward perturbation matrices ∆K and ∆M for the
spectral norm and for the Frobenius norm may be different. In particular, the optimal
(∆K,∆M) for the Frobenius norm is unique and can be explicitly stated as by (3.13),
while the optimal (∆K,∆M) for the spectral norm, in general, is not unique and we do
not have an explicit expression for it.

3.2 Optimal Residuals

Theorem 3.1 gives the minimal spectral norm and Frobenius norm for an approximate
eigen-quaternary of {K,M}. In this subsection, we shall investigate the second question
raised at the beginning of the section.

Given a pair of approximate deflating subspaces {U,V}, there are many KR ∈ Rk×k

and MR ∈ Rk×k, e.g., the ones in the form of (3.14) below, which, combined with the basis
matrices U and V for U and V, lead to approximate eigen-quaternary of {K,M}. Each
approximate eigen-quaternary gives rise to an optimal backward error ζ(U, V,KR,MR) as
defined by (3.9). A natural question then is how small can ζ(U, V,KR,MR) get by varying
KR and MR.
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Our investigation reveals a similar conclusion to that for the standard nonsymmetric
eigenvalue problem in [10]: the Rayleigh quotient pair {KRQ,MRQ} in (2.8) does not achieve
the minimum in general, but is a reasonably good and computable choice.

Because of Lemma 3.3, we will consider these KR and MR:

KR = (UTV )−1SK and MR = (V TU)−1SM , (3.14)

where SK , SM ∈ Rk×k are symmetric.
We begin by the case for k = 1. In this case, KR = SK/(uuuTvvv) is a scalar, and by

calculation, the optimal KR in the spectral norm (using ∥uuu∥2 = ∥vvv∥2=1) is

KR = uuuTKvvv (3.15)

which is different from
KRQ = uuuTKuuu/(uuuTvvv)

unless uuu = ±vvv or {R(uuu),R(vvv)} is already a pair of deflating subspaces. For the Frobenius
norm, simple calculations yield the optimal KR as

KR =
2uuuTKvvv − uuuTKuuu(uuuTvvv)

2− (uuuTvvv)2
(3.16)

which is not equal to KRQ, either. It is also noticed that the optimal KR in (3.15) for the
spectral norm differs from the one in (3.16) for the Frobenius norm.

In general for k > 1, it doesn’t seem to be possible to derive closed formulas for the
optimal KR and MR with respect to any unitarily invariant norm, even for the Frobenius
norm which is often the easiest norm to handle. In Theorem 3.2 below, we present the
determining equations for SK and SM that minimizes ζF(U, V,KR,MR).

Theorem 3.2. For the Frobenius norm, there is a unique {KR,MR} in the form of (3.14)
that minimizes ζF(U, V,KR,MR), and SK and SM for the optimal {KR,MR} satisfies

SK(2QTQ− Ik) + (2QTQ− Ik)SK −Diag(SK [2QTQ− Ik])

= −2UTKU + 2(QTV TKU + UTKVQ) + Diag(UTKU − 2QTV TKU), (3.17a)

SM (2QQT − Ik) + (2QQT − Ik)SM −Diag(SM [2QQT − Ik])

= −2V TMV + 2(QUTMV + V TMUQT) + Diag(V TMV − 2QUTMV ), (3.17b)

where Q := (UTV )−1 and Diag(Z) denotes the diagonal matrix whose diagonal entries are
those of Z.

Proof. The equations in (3.17) are the first order optimality conditions for minimizing

2∥RK(KR)∥2F − ∥V TRK(KR)∥2F and 2∥RM (MR)∥2F − ∥UTRM (MR)∥2F,

upon using

∥Z∥2F = trace(ZTZ), and
∂trace(ZS)

∂S
= Z + ZT −Diag(Z) for S = ST.
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These equations are systems of linear equations. We claim that they have unique solutions
and thus {KR,MR} in the form of (3.14) must be unique. To see this, we show that the
corresponding homogeneous systems have only the trivial solution, i.e., the solution 0. For
(3.17a), denote by X = SK(2QTQ− Ik) and note that

Diag(X) = Diag(
X +XT

2
).

Thus the corresponding homogeneous system is

X +XT = Diag(
X +XT

2
)

which is true if and only if X +XT = 0, i.e.,

(2QTQ− Ik)SK + SK(2QTQ− Ik) = 0.

This implies SK = 0 since 2QTQ− Ik is positive definite. This completes the proof.

Even though (3.17a) and (3.17b) are both linear systems, it seems that there is no
easy way to explicitly express SK and SM . In the special case R(U) = R(V ), the unique
solutions are SK = UTKU and SM = V TMV .

3.3 Near Optimality of the Rayleigh Quotient Pair

Previously, we introduced Rayleigh quotient pair {KRQ,MRQ}:

KRQ = (UTV )−1UTKU and MRQ = (V TU)−1V TMV. (2.8)

It is in general not the optimal pair that minimizes ζ(U, V,KR,MR) in the Frobenius norm
and the spectral norm. So for a given pair of approximate deflating subspaces {U,V},
there are better pairs {KR,MR}, in the sense of giving smaller ζ(U, V,KR,MR), than the
Rayleigh quotient pair to extract partial spectral information for H from.

On the other hand, consider

HRQ =

[
KRQ

MRQ

]
. (2.9)

Factorize UTV as UTV = WT
1 W2, where Wi ∈ Rk×k are nonsingular. Recall the structure-

preserving restriction

HSR =

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
(3.18)

introduced in [1, 2]. It can be verified that

HRQ = [W2 ⊕W1]
−1HSR[W2 ⊕W1],
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and thus HRQ and HSR have the same eigenvalues. In [1, 2], it was the eigenvalues of
HSR, and thus of HRQ, too, that were used to approximate part of the eigenvalues of H,
given the pair of approximate deflating subspaces {U,V}. There, it was also proved that
such eigenvalue approximation is optimal in the sense of the trace minimization principle
obtained there. Therefore the Rayleigh quotient pair must be a reasonably good pair and
cannot be too far from the optimal one {KR,MR} in the form of (3.14) that minimizes
ζ(U, V,KR,MR). In this subsection, we will justify such a claim.

Recall our assumptions:

UTU = V TV = Ik, and rank(UTV ) = k. (3.3)

Let KR and MR be in the form of (3.14), where SK and SM are symmetric. The angle
between U = R(U) and V = R(V ) is defined by

θmax(U,V) := arccosσmin(U
TV ),

where σmin(U
TV ) is the smallest singular value of UTV .

Owing to the definition of ζ(U, V,KR,MR) and Theorem 3.1, we will focus on minimiz-
ing the norms of RK(KR) and RM (MR), separately.

Lemma 3.4. For any KR, MR, and unitarily invariant norm ∥ · ∥ui,

∥KRQ −KR∥ui ≤ α · ∥RK(KR)∥ui, (3.19a)

∥MRQ −MR∥ui ≤ α · ∥RM (MR)∥ui, (3.19b)

where

α =

√
1 + sin θmax(U,V)

cos θmax(U,V)
. (3.20)

Proof. We will prove (3.19a) only since (3.19b) can be proved in the same way. Let
V⊥ ∈ Rn×(n−k) that makes [V, V⊥] an orthogonal matrix and set P = [U, V⊥]. Write

RK(KR) = KU − V KR

= (KU − V KRQ) + V (KRQ −KR)

= RK(KRQ) + V (KRQ −KR). (3.21)

Now use UTRK(KRQ) = 0 and V T
⊥ V = 0 to get

PTRK(KR) =

[
UTV (KRQ −KR)
V T
⊥ RK(KRQ)

]
. (3.22)

Therefore

∥PTRK(KR)∥ui ≥ ∥(UTV )(KRQ −KR)∥ui
≥ σmin(U

TV ) · ∥KRQ −KR∥ui, (3.23)

∥PTRK(KR)∥ui ≤ ∥P∥2∥RK(KR)∥ui

12



=
√

1 + sin θmax(U,V) ∥RK(KR)∥ui. (3.24)

In deriving (3.24), we have used

PTP =

[
Ik UTV⊥

V T
⊥ U In−k

]
⇒ ∥P∥22 = ∥PTP∥2 = 1 + ∥UTV⊥∥2 = 1 + sin θmax(U,V).

Combine (3.23) and (3.24) to get (3.19a).

Theorem 3.3. For any unitarily invariant norm ∥ · ∥ui,

min ∥KRQ −KR∥ui ≤ α ·min ∥RK(KR)∥ui, (3.25a)

min ∥MRQ −MR∥ui ≤ α ·min ∥RM (MR)∥ui, (3.25b)

and

min ∥RK(KR)∥ui ≤ ∥RK(KRQ)∥ui ≤ (1 + α) ·min ∥RK(KR)∥ui, (3.26a)

min ∥RM (MR)∥ui ≤ ∥RM (MRQ)∥ui ≤ (1 + α) ·min ∥RM (MR)∥ui. (3.26b)

where the “min” in (3.25a) and (3.26a) are taken over all KR in the form of (3.14) with
symmetric SK , and the ones in (3.25b) and (3.26b) are taken over all MR in the form of
(3.14) with symmetric SM , and α is given by (3.20).

Proof. The inequalities in (3.25) are direct consequences of Lemma 3.4. In what follows,
we will prove (3.26a) only since (3.26b) can be proved in the same way. The first inequality
in (3.26a) is evident. For the second inequality there, we note

RK(KRQ) = RK(KR)− V (KRQ −KR)

by (3.21) and thus

∥RK(KRQ)∥ui ≤ ∥RK(KR)∥ui + ∥V (KRQ −KR)∥ui
≤ ∥RK(KR)∥ui + ∥KRQ −KR∥ui
≤ (1 + α)∥RK(KR)∥ui (3.27)

for all KR in the form of (3.14) with symmetric SK . Minimizing the right-hand side of
(3.27) over all SK leads to the second inequality in (3.26a).

4 Residual-based Error Bounds for Eigenvalues

As preparation, we first cite an eigenvalue perturbation result for a positive definite pencil
in subsection 4.1 and apply it to LREP (1.1) in subsection 4.2, and then come to develop
residual based error bounds in subsection 4.3. Results in both subsections 4.1 and 4.2 are
of independent interests on their own from the rest of this article.

In what follows, A ≻ 0 means that A is Hermitian and positive definite.

13



4.1 A Perturbation Bound for Positive Definite Pencil

Consider a Hermitian matrix pencil A − λB, where A, B ∈ Cn×n are Hermitian. It is
called a positive definite pencil if there is a λ0 ∈ R such that A− λ0B ≻ 0 [11, 13, 16].

Suppose that A−λB is a positive definite pencil and B is nonsingular. Let n+ and n−
be the numbers of positive and negative eigenvalues of B, respectively. Note n++n− = n.
It is known [16] that A−λB has only real eigenvalues which we will divide into two groups
{λ−

i }
n−
i=1 and {λ+

i }
n+

i=1 and which can be arranged in the order as

λ−
n− ≤ · · · ≤ λ−

1 < λ+
1 ≤ · · · ≤ λ+

n+
.

Moreover, A− λB is diagonalizable [6, 16]: there exists nonsingular Z ∈ Cn×n such that

ZHAZ = diag(Λ+,−Λ−), ZHBZ = J := diag(In+ ,−In−), (4.1)

where Λ± = diag(λ±
1 , λ

±
2 , . . . , λ

±
n±) and Λ = diag(Λ+, Λ−).

Lemma 4.1 ([17]). Let A− λB be a positive definite pencil with nonsingular B and with
the eigen-decomposition (4.1). Suppose it is perturbed to another positive definite pencil
Ã − λB̃ with nonsingular B̃, and adopt the same notations for this perturbed pencil as
those for A − λB except with a tilde on each symbol. Then for any unitarily invariant
norm ∥ · ∥ui,

∥Λ̃− Λ∥ui ≤ ∥Z∥2∥Z̃∥2
(
∥Ã−A∥ui + ξ∥B̃ −B∥ui

)
,

where ξ = max{∥Λ∥2, ∥Λ̃∥2}.

The concept of positive definite pencil is closely related to that of the so-called definite
pencil in the past literature [21, 23, 24]. The latter is more general, encompassing the
former. In general, B may be singular, but Lemma 4.1 excludes the case. When B is
singular, infinite eigenvalues occur. In order to be able to deal with both finite and infinite
eigenvalues at the same time, in the literature number pairs (α, β) were used to represent
eigenvalues α/β which is finite if β ̸= 0 and infinite otherwise and the chordal distance
was used to measure the difference between two eigenvalues, finite or not. Lemma 4.1
resembles various perturbation bounds in [5, 14, 15, 21, 23] for the definite pencils.

4.2 A Perturbation Bound for LREP

Consider LREP (1.1) with K ≻ 0 and M ≻ 0. It is equivalent to the generalized eigenvalue
problem for the matrix pencil [1]

AAA− λBBB ≡
[
M

K

]
− λ

[
0 In
In 0

]
. (4.2)

AAA− λBBB is a positive definite pencil because AAA− 0 ·BBB = AAA ≻ 0. Recall Theorem 2.1. We
find the eigen-decomposition for AAA− λBBB:

ZTAAAZ = diag(Λ,Λ), ZTBBBZ = diag(In,−In), (4.3)
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where

Z =

[
ΨΛ1/2 ΨΛ1/2

ΦΛ−1/2 −ΦΛ−1/2

]
. (4.4)

The next theorem bounds Z and its inverse from above and below.

Theorem 4.1. For Z in (4.4),

2γ1 ≤ ∥Z∥22 ≤ 2γ2,
1

2
γ1 ≤ ∥Z−1∥22 ≤

1

2
γ2, (4.5)

where

γ1 = max

{
∥M−1∥2λ1,

∥M∥2
λn

}
, γ2 =

{
∥M−1∥2λn,

∥M∥2
λ1

}
. (4.6)

They are also valid if all occurrences of M are replaced by K.

Proof. It can be verified that

ZZT = 2

[
ΨΛΨT 0

0 ΦΛ−1ΦT

]
, Z−TZ−1 =

1

2

[
ΦΛ−1ΦT 0

0 ΨΛΨT

]
.

Therefore

∥Z∥22 ≤ 2max

{
∥Ψ∥22λn,

∥Φ∥22
λ1

}
= 2max

{
∥M−1∥2λn,

∥M∥2
λ1

}
,

∥Z∥22 ≥ 2max

{
∥Ψ∥22λ1,

∥Φ∥22
λn

}
= 2max

{
∥M−1∥2λ1,

∥M∥2
λn

}
,

∥Z−1∥22 ≤
1

2
max

{
∥Φ∥22
λ1

, ∥Ψ∥22λn

}
=

1

2
max

{
∥M∥2
λ1

, ∥M−1∥2λn

}
,

∥Z−1∥22 ≥
1

2
max

{
∥Φ∥22
λn

, ∥Ψ∥22λ1

}
=

1

2
max

{
∥M∥2
λn

, ∥M−1∥2λ1

}
,

where we have used M = ΦΦT and M−1 = ΨΨT. Together, they yield (4.5). To see the
last claim of this theorem, we let Ψ̂ = ΨΛ and Φ̂ = ΦΛ−1. It can be verified that

K = ΨΛ2ΨT = Ψ̂ Ψ̂
T
, M = ΦΦT = Φ̂Λ2Φ̂

T
, Z =

[
Ψ̂Λ−1/2 Ψ̂Λ−1/2

Φ̂Λ1/2 −Φ̂Λ1/2

]
,

and K−1 = Φ̂Φ̂
T
. Following the same lines of argument as above, we see all inequalities

in (4.5) are valid if all occurrences of M are replaced by K.

A straightforward application of Lemma 4.1 leads to

Theorem 4.2. For LREP (1.1) with K ≻ 0 and M ≻ 0 admitting the decompositions in
Theorem 2.1, let Z be defined by (4.4). Suppose that K and M are perturbed to K̃ ≻ 0 and

M̃ ≻ 0, and accordingly H is perturbed to H̃. Adopt the same notations for the perturbed
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LREP for H̃ as those for H except with a tilde on each symbol. Then for any unitarily
invariant norm ∥ · ∥ui,

∥Λ̃⊕ Λ̃− Λ⊕ Λ∥ui ≤ ∥Z∥2∥Z̃∥2∥M̃ ⊕ K̃ −M ⊕K∥ui. (4.7)

In particular,

max
1≤i≤n

|λ̃i − λi| ≤ ∥Z∥2∥Z̃∥2max{∥M̃ −M∥2, ∥K̃ −K∥2}, (4.8a)√√√√ n∑
i=1

|λ̃i − λi|2 ≤
1√
2
∥Z∥2∥Z̃∥2

√
∥M̃ −M∥2F + ∥K̃ −K∥2F. (4.8b)

In the left-hand side of (4.7), the difference between Λ̃ and Λ appears twice. This
repetition is handily removed for the spectral and Frobenius norm in (4.8). In general, it
is not so easy to remove the repetition without weakening the inequality a little bit. In
the corollary below, we show one way of doing it.

Corollary 4.1. Under the conditions of Theorem 4.2,

∥Λ̃− Λ∥ui ≤ ∥Z∥2∥Z̃∥2
[
∥M̃ −M∥ui + ∥K̃ −K∥ui

]
. (4.9)

Proof. It is suffices to show that (4.9) holds for all Ky Fan 2ℓ-norm ∥ · ∥(ℓ) which is the
sum of the ℓ largest singular values of its argument [4, 8, 22].

Let {i1, i2, . . . , in} be a permutation of {1, 2, . . . , n} such that

|λ̃i1 − λi1 | ≥ · · · ≥ |λ̃in − λin |.

For 1 ≤ ℓ ≤ n, we have

∥Λ̃⊕ Λ̃− Λ⊕ Λ∥(2ℓ) = 2

ℓ∑
j=1

|λ̃ij − λij |

= 2∥Λ̃− Λ∥(ℓ),

∥M̃ ⊕ K̃ −M ⊕K∥(2ℓ) ≤ ∥M̃ −M∥(2ℓ) + ∥K̃ −K∥(2ℓ)
≤ 2

[
∥M̃ −M∥(ℓ) + ∥K̃ −K∥(ℓ)

]
.

By Theorem 4.2, we have

∥Λ̃− Λ∥(ℓ) ≤ ∥Z∥2∥Z̃∥2
[
∥M̃ −M∥(ℓ) + ∥K̃ −K∥(ℓ)

]
,

as expected.
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4.3 Residual Based Error Bounds for LREP

Consider an approximate eigen-quaternary {U, V,KR,MR} of {K,M}, where U, V ∈ Rn×k

satisfying, as before,

UTU = V TV = Ik, and rank(UTV ) = k, (3.3)

and KR,MR ∈ Rk×k, and define RK(KR) and RM (MR) by (3.1) and HR by (3.2). In
subsection 3.1, we showed that {U, V,KR,MR} of {K,M} is an exact eigen-quaternary of

{K̃, M̃} := {K +∆K,M +∆M} (4.10)

with bounds in norm on ∆K and ∆M in terms of the residuals RK(KR) and RM (MR).

If the two residuals are sufficiently small, then K̃ ≻ 0 and M̃ ≻ 0 and the eigenvalue
problem for the corresponding H̃ is again an LREP, making all results in subsection 4.2
applicable.

Lemma 4.2. Suppose ∥RK(KR)∥2 < σmin(K) and ∥RM (MR)∥2 < σmin(M). Then HR is
similar to an LREP of 2k × 2k. Consequently, all eigenvalues of HR are real and they
come in {±λ} pairs.

Proof. By Theorem 3.1, the approximate exact eigen-quaternary {U, V,KR,MR} of {K,M}
is an exact eigen-quaternary of {K̃, M̃} as in (4.10) with

∥∆K∥2 = ∥RK(KR)∥2 < σmin(K), ∥∆M∥2 = ∥RM (MR)∥2 < σmin(M).

Now apply Lemma 3.1 to conclude that HR is similar to[
0 W−T

1 (UTK̃U)W−1
1

W−T
2 (V TM̃V )W−1

2 0

]
whose eigenvalue problem is an LREP, where Wi are as defined in Lemma 3.1.

In what follows, whenever HR is similar to an LREP of 2k × 2k, we will denote its
eigenvalues by

−µk ≤ · · · ≤ −µ1 < µ1 ≤ · · · ≤ µk. (4.11)

Let Z ∈ R2n×2n be the one that diagonalizesAAA−λBBB defined in (4.2) and (4.3) and similarly

Z̃ diagonalizes ÃAA− λB̃BB which is similarly defined in terms of K̃ and M̃ .
The appearance of Z̃ is the unsatisfactory part of the results below since ∆K and ∆M

are usually unknown. But we argue that it does not necessarily invalidate the usefulness of
these results. Because for sufficiently small RK(KR) and RM (MR) in norm, it is reasonable
to expect ∥Z̃∥2 ≈ ∥Z∥2 and the latter can be bounded as in Theorem 4.1.

Theorem 4.3. If ∥RK(KR)∥2 < σmin(K) and ∥RM (MR)∥2 < σmin(M), then there are k
positive eigenvalues of H:

λi1 ≤ · · · ≤ λik

such that
max
1≤j≤k

|λij − µj | ≤ ∥Z∥2∥Z̃∥2max{∥RK(KR)∥2, ∥RM (MR)∥2}. (4.12)
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Proof. The conditions of the theorem ensure that {U, V,KR,MR} is an exact eigen-quaternary

of {K̃, M̃} in (4.10) with ∥∆K∥2 = ∥RK(KR)∥2 and ∥∆M∥2 = ∥RM (MR)∥2. Thus µj for

1 ≤ j ≤ k are among the positive eigenvalues of H̃. Let µj be the ijth positive eigenvalue

of H̃. The inequality (4.12) is now a consequence of (4.8a).

In a similar way, we can prove

Theorem 4.4. If ∥RK(KR)∥F < σmin(K) and ∥RM (MR)∥F < σmin(M), then there are k
eigenvalues of H:

λi1 ≤ · · · ≤ λik

such that√ ∑
1≤j≤k

|λij − µj |2 ≤ ∥Z∥2∥Z̃∥2
[
2∥RK(KR)∥2F − ∥UTRK(KR)∥2F

+ 2∥RM (MR)∥2F − ∥V TRM (MR)∥2F
]1/2

. (4.13)

Proof. The conditions on ∥RK(KR)∥F and ∥RM (MR)∥F ensure that H̃ defined with the
optimal ∆K and ∆M in the Frobenius norm is an LREP because, by the proof of Theo-
rem 3.1,

∥∆K∥2 ≤ ∥∆K∥F =
√

2∥RK(KR)∥2F − ∥UTRK(KR)∥2F ≤ ∥RK(KR)∥F < σmin(K)

and similarly ∆M∥2 < σmin(M). The inequality (4.13) is now a consequence of (4.8b).

The conditions on RK(KR) and RM (MR) in Theorem 4.4 seem to be stronger than
necessary at first sight. It would be more natural to have the same conditions as stated in
Theorem 4.3. The thing is that we don’t know if ∥∆K∥2 ≤ ∥RK(KR)∥2 for the optimal
∆K in the Frobenius norm while we do know ∥∆K∥2 = ∥RK(KR)∥2 for the optimal ∆K
in the spectral norm. This same reasoning explains the seemingly stronger than necessary
conditions in Theorem 4.5 below for any unitarily invariant norm ∥ · ∥ui.

Theorem 4.5. If 2∥RK(KR)∥ui < σmin(K) and 2∥RM (MR)∥ui < σmin(M), then there are
k eigenvalues of H:

λi1 ≤ · · · ≤ λik

such that
∥Ω̃ −Ω∥ui ≤ 2∥Z∥2∥Z̃∥2

[
∥RK(KR)∥ui + ∥RM (MR)∥ui

]
, (4.14)

where Ω = diag
(
λi1 , . . . , λik

)
and Ω̃ = diag

(
µ1, . . . , µk

)
.

Proof. The conditions on ∥RK(KR)∥ui and ∥RM (MR)∥ui ensure that H̃ defined with the
optimal ∆K and ∆M in the unitary invariant norm is an LREP because, by the proof of
Theorem 3.1,

∥∆K∥2 ≤ ∥∆K∥ui ≤ 2∥RK(KR)∥ui < σmin(K)
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and similarly ∥∆M∥2 < σmin(M). By Corollary 4.1, we have

∥Ω̃ −Ω∥ui ≤ ∥Λ̃− Λ∥ui

≤ ∥Z∥2∥Z̃∥2
[
∥∆K∥ui + ∥∆M∥ui

]
≤ 2∥Z∥2∥Z̃∥2

[
∥RK(KR)∥ui + ∥RM (MR)∥ui

]
,

as expected.

Remark 4.1. For a given pair of approximate deflating subspaces {U,V}, as in [1, 2],
likely we will use the associated Rayleigh quotient pair {KRQ,MRQ} to make up an ap-
proximate eigen-quaternary {U, V,KRQ,MRQ} of {K,M}. Theorems 4.3 and 4.4 can be
applied with KR = KRQ and MR = MRQ to arrive at corresponding error bounds on eigen-
value approximations by the eigenvalues of HRQ in (2.9).

5 Compare with the Standard Eigenvalue Problems

Analogous questions to what we have been investigating so far had been thoroughly studied
for the standard eigenvalue problems. Our results here resemble those in the literature.
In what follows, we give a brief review on the related results.

Consider the eigenvalue problem for C ∈ Cn×n. Suppose X ∈ Cn×k whose columns
span an approximate invariant subspace, i.e., AX ≈ XD for some D ∈ Ck×k in the sense
that

R(D) = AX −XD

is relatively small in norm. Let

E1 := {E ∈ Cn×n : (C + E)X = XD}.

Each E in E1 makes R(X) an invariant subspace of C + E associated with its partial
spectrum eig(D). Define the optimal backward error by

η(X,D) := min
E∈E1

∥E∥ui .

It is shown [27, Theorem 2.4.2] that

η(X,D) = ∥R(D)∥ui .

In the other word, for any given approximate eigen-matrix pair (D,X), the minimal
norm ∥E∥ui among all possible backward perturbations is given by ∥R(D)∥ui. The next
question is to minimize η(X,D) as D varies. If also XHX = Ik, we have (see, e.g., [27,
Theorem 2.4.1], [25, Theorem 2.1], [22, Theorem IV.1.15])

min
D∈Ck×k

∥R(D)∥ui = ∥CX −X(XHCX)∥ui,
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i.e., the Rayleigh quotient matrix D = XHCX achieves the minimum of ∥R(D)∥ui over
D ∈ Ck×k, and it is unique for ∥ · ∥ui = ∥ · ∥F.

For Hermitian C ∈ Cn×n, it is often desirable to enforce that C+E remains Hermitian
too. In this case, define [26]

η(X,D) := min
E∈E2

∥E∥ui ,

where E2 :=
{
E = EH ∈ Cn×n : (C+E)X = XD

}
. Suppose XHX = Ik. It is shown that

(a special case of the main theorem in [10, p.478])

η2(X,D) : = min
E∈E2

∥E∥2 = ∥R(D)∥2,

ηF(X,D) : = min
E∈E2

∥E∥F =
√

2∥R(D)∥2F − ∥XHR(D)∥F ,

but no expression for η(X,D) for a general ∥·∥ui is known. Moreover, among all Hermitian
D ∈ Ck×k, the Rayleigh quotient D = XHCX achieves the minimums for η(X,D) for all
∥ · ∥ui [25, Theorem 2.2], i.e.,

XHCX = argmin
D

η(X,D),

including η2(X,D) and ηF(X,D). Let the eigenvalues of C and those of D = XHCX be

λ1 ≤ · · · ≤ λn, µ1 ≤ · · · ≤ µk,

respectively. As a consequence of well-known perturbation results for Hermitian matrices
[22], there exist i1 < i2 < · · · < ik such that

max
1≤j≤k

|λij − µj | ≤ ∥R(D)∥2,√ ∑
1≤j≤k

|λij − µj |2 ≤
√

2∥R(D)∥2F − ∥XHR(D)∥F .

Similar inequalities in a unitarily invariant norm can be derived, too [25].
Finally, for (nonnormal) C ∈ Cn×n with the availability of both left and right ap-

proximate invariant subspaces, Kahan, Parlett, and Jiang [10] analyzed the backward
perturbation and the residuals for a given quaternary (XL, XR, DL, DR), where (DR, XR)
and (DL, XL) are approximate right and left eigen-matrix pairs of C, respectively, and
XL, XR ∈ Cn×k have orthonormal columns. Let

E3 :=
{
E ∈ Cn×n : (C + E)XR = XRDR and XH

L (C + E) = DLX
H
L

}
,

RR(DR) = XRDR − CXR, RL(DL) = DLX
H
L −XH

L C.

It is shown that [10] E3 ̸= ∅ if and only if DR = (XH
L XR)

−1DL(X
H
L XR) and

η2(XL, XR, DL, DR) : = min
E∈E3

∥E∥2 = max{∥RL(DL)∥2, ∥RR(DR)∥2},
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ηF(XL, XR, DL, DR) : = min
E∈E3

∥E∥F =
√

∥RL(DL)∥2F + ∥RR(DR)∥2F − ∥XH
L RR(DR)∥2F.

In this case, the Rayleigh quotient matrices

DR;RQ = (XH
L XR)

−1XH
L CXR, DL;RQ = XH

L CXR(X
H
L XR)

−1

in general do not achieve the minimum of either η2 or ηF any more over all possible DR

and DL.

6 Concluding remarks

In approximations for the standard eigenvalue problem, much attention was drawn to
investigate the approximation accuracy by a given approximate invariant subspace in the
past. Numerous results some of which are reviewed in section 5 have been obtained and can
be found in, e.g., [20, 22, 25, 27] and references therein. They are particularly important
for today’s large scale eigenvalue problems because often it is an approximate invariant
subspace that gets computed first and then the interested eigenvalues/eigenvectors are
then extracted from projecting the problems by approximate invariant subspaces into
much smaller eigenvalue problems.

While the linear response eigenvalue problem (1.1) is a standard eigenvalue problem,
it has its own block and symmetry structures that are not exploited in the existing theory.
Keeping these special structures in mind, in this paper, we have developed a backward
perturbation analysis and error bounds for the approximation accuracy of eigenvalues
generated by a pair of approximate deflating subspaces or eigen-quaternary. Our results
are specific for LREP and cannot be derived from the existing ones such as those in
section 5, and they are useful for convergence analysis and designing stopping criteria for
iterative methods for LREP.

We have assumed so far that K and M in LREP (1.1) under investigation are real
and symmetric, beside assumptions on their definiteness. We remark that all results are
valid for complex Hermitian K and M , with the same assumptions on their definiteness,
after minor changes: replacing all R by C and all superscripts (·)T by complex conjugate
transposes (·)H.
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