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Abstract

Four classes of eigenvalue problems that admit similar min-max principles and the
Cauchy interlacing inequalities as the symmetric eigenvalue problem famously does are
investigated. These min-max principles pave ways for efficient numerical solutions for
extreme eigenpairs by optimizing the so-called Rayleigh quotient functions. In fact,
scientists and engineers have already been doing that for computing the eigenvalues
and eigenvectors of Hermitian matrix pencils A − λB with B positive definite, the
first class of our eigenvalue problems. But little attention has gone to the other
three classes: positive semidefinite pencils, linear response eigenvalue problems, and
hyperbolic eigenvalue problems, in part because most min-max principles for the latter
were discovered only very recently and some more are being discovered. It is expected
that they will drive the effort to design better optimization based numerical methods
for years to come.

1 Introduction

Eigenvalue problems are ubiquitous. Eigenvalues explain many physical phenomena well
such as vibrations and frequencies, (in)stabilities of dynamical systems, and energy levels
in molecules or atoms. This article focuses on classes of eigenvalue problems that ad-
mit various min-max principles and the Cauchy interlacing inequalities as the symmetric
eigenvalue problem famously does [4, 38, 47]. These results make it possible to efficiently
calculate extreme eigenpairs of the eigenvalue problems by optimizing associated Rayleigh
quotients.

Consider the generalized eigenvalue problem

Ax = λBx, (1)

where both A and B are Hermitian. The first class of eigenvalue problems are those for
which B is also positive definite. Such an eigenvalue problem is equivalent to a symmetric
eigenvalue problem B−1/2AB−1/2y = λx and thus, not surprisingly, all min-max principles
(Courant-Fischer, Ky Fan trace min/max, Wielandt-Lidskii) and the Cauchy interlacing
inequalities have their counterparts in this eigenvalue problem. The associated Rayleigh
quotient is

ρ(x) =
xHAx

xHBx
. (2)
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When B is indefinite and even singular, (1) is no longer equivalent to a symmetric
eigenvalue problem in general and it may even have complex eigenvalues which clearly
admit no min-max representations. But if there is a real scalar λ0 such that A − λ0B is
positive semidefinite, then the eigenvalue problem (1) has only real eigenvalues and they
admit similar min-max principles and the Cauchy interlacing inequalities [25, 27, 29]. This
is the second class of eigenvalue problems and it share the same Rayleigh quotient (2) as
the first class. We call a matrix pencil in this class a positive semidefinite pencil. Opposite
to the concept of a positive semidefinite matrix pencil , naturally, is that of a negative
semidefinite matrix pencil A − λB by which we mean that A and B are Hermitian and
there is a real λ0 such that A − λ0B is negative semidefinite. Evidently, if A − λB is
a negative semidefinite matrix pencil, then −(A − λB) = (−A) − λ(−B) is a positive
semidefinite matrix pencil because (−A) − λ0(−B) = −(A − λ0B). Therefore it suffices
to only study either positive or negative semidefinite pencils.

The third class of eigenvalue problems is the so-called linear response eigenvalue prob-
lem or random phase approximation eigenvalue problem[

0 K
M 0

] [
y
x

]
= λ

[
y
x

]
,

where K and M are Hermitian and positive semidefinite matrices and one of them is
definite. Any eigenvalue problem in this class can be turned into one in the second class
by permuting the first and second block rows to get[

M 0
0 K

] [
y
x

]
= λ

[
0 I
I 0

] [
y
x

]
,

where I is the identity matrix of apt size. In this sense, the third class is a subclass of the
second class, but with block substructures. The associated Rayleigh quotient is

ρ(x, y) =
xHKx+ yHMy

2|xHy|
.

The first minimization principle for such eigenvalue problems was essentially published by
Thouless [50, 1961], but more were obtained only very recently [2, 3].

The fourth class of eigenvalue problems is the hyperbolic quadratic eigenvalue problem

(λ2A+ λB + C)x = 0

arising from dynamical systems with friction, where A, B, and C are Hermitian and A is
positive definite and

(xHBx)2 − 4(xHAx)(xHCx) > 0 for any nonzero vector x.

The associated Rayleigh quotients are

ρ±(x) =
−xHBx±

[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2
2(xHAx)

.

Courant-Fischer type min-max principles were known to Duffin [10, 1955] and the Cauchy
type interlacing inequalities to Veselić [52, 2010]. Other min-max principles (Wielandt-
Lidskii type, Ky Fan trace min/max type) are being discovered [28].
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In the rest of this article, we will explain the steepest descent/ascent methods and
nonlinear conjugate gradient methods for the first class of eigenvalue problems, including
the incorporation of preconditioning techniques, extending search spaces, and block im-
plementations, in detail but only state min-max principles – old and new – for the other
three classes. The interested reader can consult relevant references for the corresponding
steepest descent/ascent methods and nonlinear conjugate gradient methods or design his
own based on the min-max principles stated.

Notation. Throughout this paper, Cn×m is the set of all n × m complex matrices,
Cn = Cn×1, and C = C1, and similarly Rn×m, Rn, and R are for their real counterparts.
In (or simply I if its dimension is clear from the context) is the n × n identity matrix,
and ej is its jth column. The superscript “·T” and “·H” take transpose and complex
conjugate transpose of a matrix/vector, respectively. For a matrix X, R(X) and N(X)
are the column space and null space of X, respectively.

We shall also adopt MATLAB-like convention to access the entries of vectors and
matrices. Let i : j be the set of integers from i to j inclusive. For a vector u and an matrix
X, u(j) is u’s jth entry, X(i,j) is X’s (i, j)th entry; X’s submatrices X(k:ℓ,i:j), X(k:ℓ,:), and
X(:,i:j) consist of intersections of row k to row ℓ and column i to column j, row k to row
ℓ, and column i to column j, respectively.

For A ∈ Cn×n, A ≻ 0 (A ≽ 0) means that A is Hermitian and positive (semi-)definite,
and A ≺ 0 (A ≼ 0) means −A ≻ 0 (−A ≽ 0).

2 Hermitian Pencil A− λB with Definite B

In this section, we consider the generalized eigenvalue problem

Ax = λBx, (3)

where A,B ∈ Cn×n are Hermitian with B ≻ 0. When the equation (3) for a scalar λ ∈ C
and 0 ̸= x ∈ Cn holds, λ is called an eigenvalue and x a corresponding eigenvector.
Theoretically, it is equivalent to the standard Hermitian eigenvalue problem

B−1/2AB−1/2y = λy. (4)

Both have the same eigenvalues with eigenvectors related by y = B1/2x, where B−1/2 =
(B−1)1/2 is the positive definite square root of B−1 (also B−1/2 = (B1/2)−1) [5, 19].

Numerically, if it has to be done (usually for modest n, up to a few thousands), the
conversion of (3) to a standard Hermitian eigenvalue problem is usually accomplished
through B’s Cholesky decomposition: B = RHR, where R is upper triangular, rather
than B’s square root which is much more expensive to compute but often advantageous
for theoretical investigations. The converted eigenvalue problem then is

R−HAR−1y = λy (5)

with eigenvectors related by y = Rx, and can be solved as a dense eigenvalue problem by
LAPACK [1] for modest n.

But calculating the Cholesky decomposition can be very expensive, too, for large n,
not to mention possible fill-ins for unstructured sparse B. In this section, we are concerned
with Rayleigh Quotient based optimization methods to calculate a few extreme eigenvalues
of (3).
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By the theoretical equivalence of (3) to the standard Hermitian eigenvalue problem
(4) or (5), we know that (3) has n real eigenvalues and B-orthonormal eigenvectors.

Throughout the rest of this section, A−λB will be assumed a Hermitian matrix pencil
of order n with B ≻ 0, and its eigenvalues, eigenvectors, and eigen-decomposition are
given by (6).

eigenvalues: λ1 ≤ λ2 ≤ · · · ≤ λn, and
Λ = diag(λ1, λ2, . . . , λn),

B-orthonormal eigenvectors: u1, u2, . . . , un, and
U = [u1, u2, . . . , un],

eigen-decomposition: UHAU = Λ and UHBU = In.

(6)

In what follows, our focus is on computing the first few smallest eigenvalues and their
associated eigenvectors. The case for the largest few eigenvalues can be dealt with in the
same way by replacing A by −A, i.e., considering (−A)− λB instead.

2.1 Basic Theory

Given x ∈ Cn, the Rayleigh Quotient for the generalized eigenvalue problem Ax = λBx
is defined by

ρ(x) =
xHAx

xHBx
. (7)

Similarly for X ∈ Cn×k with rank(X) = k, the Rayleigh Quotient Pencil is

XHAX − λXHBX. (8)

Theorem 2.1 collects important min-max results and the Cauchy interlacing inequalities
for the eigenvalue problem (3). They can be derived via the corresponding results for (4)
or (5), the theoretical equivalence of (3) [4, 38, 47].

Theorem 2.1. Let A− λB be a Hermitian matrix pencil of order n with B ≻ 0.

1 (Courant-Fischer min-max principles) For j = 1, 2, . . . , n,

λj = min
dimX=j

max
x∈X

ρ(x), (9a)

λj = max
codimX=j−1

min
x∈X

ρ(x). (9b)

In particular,
λ1 = min

x
ρ(x), λn = max

x
ρ(x). (10)

2 (Ky Fan trace min/max principles) For 1 ≤ k ≤ n,

k∑
i=1

λi = min
XHBX=Ik

trace(XHAX), (11a)

n∑
i=n−k+1

λi = max
XHBX=Ik

trace(XHAX). (11b)

Furthermore if λk < λk+1, then R(X) = R(U(:,1:k)) for any minimizing X ∈ Cn×k for

(11a); if λn−k < λn−k+1, then R(X) = R(U(:,n−k+1:n)) for any maximizing X ∈ Cn×k

for (11b).
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3 (Cauchy interlacing inequalities) Let X ∈ Cn×k with rank(X) = k, and denote by
µ1 ≤ µ2 ≤ · · · ≤ µk the eigenvalues of the Rayleigh quotient pencil (8). Then

λj ≤ µj ≤ λn−k+j for 1 ≤ j ≤ k. (12)

Furthermore if λj = µj for 1 ≤ j ≤ k and λk < λk+1, then R(X) = R(U(:,1:k)); if
µj = λn−k+j for 1 ≤ j ≤ k and λn−k < λn−k+1, then R(X) = R(U(:,n−k+1:n)).

The computational implications of these results are as follows. The equations in (10) or
(11) naturally leads to applications of optimization approaches to computing the first/last
or first/last few eigenvalues and their associated eigenvectors, while the inequalities in (12)
suggest that judicious choices of X can push µj either down to λj or up to λn−k+j for the
purpose of computing them.

In pertinent to deflation, i.e., avoiding computing known or already computed eigen-
pairs, we have the following results.

Theorem 2.2. Let integer 1 ≤ k < n and ξ ∈ R.

1. We have
λk+1 = min

x⊥B ui, 1≤i≤k
ρ(x), λk+1 = max

x⊥B ui, k+2≤i≤n
ρ(x),

where ⊥B stands for B-orthogonality, i.e., x⊥B y means ⟨x, y⟩B ≡ xHBy = 0.

2. let V = [u1, u2, . . . , uk]. The eigenvalues of matrix pencil [A + ξ(BV )(BV )H] − λB
are

λj + ξ for 1 ≤ j ≤ k and λj for k + 1 ≤ j ≤ n

with the corresponding eigenvectors uj for 1 ≤ j ≤ n. In particular,

UH[A+ ξ(BV )(BV )H]U =

[
Λ1 + ξIk 0

0 Λ2

]
, UHBU = In,

where Λ1 = Λ(1:k,1:k) and Λ2 = Λ(k+1:n,k+1:n).

The concept of invariant subspace is very important in the standard eigenvalue problem
and, more generally, operator theory. In a loose sense, computing a few eigenvalues of a
large scale matrix H ∈ Cn×n is equivalent to calculating a relevant invariant subspace X

of H, i.e., a subspace X ⊆ Cn such that HX ⊆ X. This concept naturally extends to the
generalized eigenvalue problem for A − λB that we are interested in, i.e., A and B are
Hermitian and B ≻ 0.

Definition 2.1. A X ⊆ Cn is called a generalized invariant subspaces of A− λB if

AX ⊆ BX.

Sometimes, it is simply called an invariant subspace.

Some important properties of an invariant subspaces are summarized into the following
theorem whose proof is left as an exercise.

Theorem 2.3. Let X ⊆ Cn and dimX = k, and let X ∈ Cn×k be a basis matrix of X.

1. X is an invariant subspace of A− λB if and only if there is A1 ∈ Ck×k such that

AX = BXA1. (13)
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2. Suppose X is an invariant subspace of A − λB and (13) holds. Then the following
statements are true.

(a) A1 = (XHBX)−1(XHAX) and thus it has the same eigenvalues as XHAX −
λXHBX. If X has B-orthonormal columns, i.e., XHBX = Ik (one can always
pick a basis matrix like this), then A1 = XHAX which is also Hermitian.

(b) For any eigenpair (λ̂, x̂) of A1: A1x̂ = λ̂x̂, (λ̂,Xx̂) is an eigenpair of A− λB.

(c) Let X⊥ ∈ Cn×(n−k) such that Z := [X,X⊥] is nonsingular and XHBX⊥ = 0.
We have

ZHAZ =

[
XHAX

XH
⊥AX⊥

]
, ZHBZ =

[
XHBX

XH
⊥BX⊥

]
.

2.2 Rayleigh-Ritz Procedure

Theorem 2.3 says that partial spectral information can be extracted from an invariant
subspace if known. But an exact invariant subspace is hard to come by in practice.
Through computations we often end up with subspaces X that

1. are accurate approximate invariant subspaces themselves, or

2. have a nearby lower dimensional invariance subspace.

For the former, it means that ∥AX − BXA1∥ is tiny for some matrix A1, where X is a
basis matrix X and ∥ ·∥ is some matrix norm. For the latter, it means there is an invariant
subspace U of a lower dimension than X such that the canonical angles from U to X are
all tiny.

The Rayleigh-Ritz procedure is a way to extract approximate spectral information on
A− λB for a given subspace that satisfies either one of the two requirements.

Algorithm 2.1 Rayleigh-Ritz procedure

Given a computed subspace X of dimension ℓ in the form of a basis ma-
trix X ∈ Cn×ℓ, this algorithm computes approximate eigenpairs of A −
λB.

1: compute the projection matrix pencil XHAX − λXHBX which is ℓ× ℓ;
2: solve the eigenvalue problem for XHAX − λXHBX to obtain its eigenpairs (λ̂i, x̂i)

which yield approximate eigenpairs (λ̂i, Xx̂i), called Rayleigh-Ritz pairs, for the orig-
inal pencil A− λB. These λ̂i are called Ritz values and Xx̂i Ritz vectors.

If X is a true invariant subspace, the Ritz values and Ritz vectors as rendered by this
Rayleigh-Ritz procedure are exact eigenvalues and eigenvectors of A− λB in the absence
of roundoff errors, as guaranteed by Theorem 2.3. So in this sense, this Rayleigh-Ritz
procedure is a natural thing to do. On the other hand, as for the standard symmetric
eigenvalue problem, the procedure retains several optimality properties as we shall now
explain.

By Theorem 2.1,
λi = min

Y⊆Cn

dimY=i

max
y∈Y

ρ(y), (14)
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where the minimization is taken over all Y ⊂ Cn with dimY = i. So given X ⊂ Cn, the
natural definition of the best approximation αi to λi is to replace Cn by X to get

αi = min
Y⊆X

dimY=i

max
y∈Y

ρ(y). (15)

Any Y ⊆ X with dimY = i can be represented by its basis matrix Y ∈ Cn×i which in turn
can be uniquely represented by Ŷ ∈ Cℓ×i with rank(Ŷ ) = i such that Y = XŶ . So y ∈ Y

is equivalent to y = Y ŷ = XŶ ŷ =: Xz for some unique z ∈ Ŷ := R(Ŷ ) ⊆ Cℓ. We have by
(15)

αi = min
Y⊆X

dimY=i

max
y∈Y

yHAy

yHBy

= min
Ŷ⊆Cℓ

dim Ŷ=i

max
z∈Ŷ

zHXHAXz

zHXHBXz
= λ̂i,

the ith eigenvalues of XHAX −λXHBX. This is the first optimality of the Rayleigh-Ritz
procedure.

Suppose we are seeking λi for 1 ≤ i ≤ k. By Theorem 11, we have

k∑
i=1

λi = min
R(Y )⊆Cn

Y HBY=Ik

trace(Y HAY ) (16)

where the minimization is taken over all Y ∈ Cn×k satisfying Y HBY = Ik. So given
X ⊂ Cn, the natural definition for the best approximation is to replace Cn by X to achieve

min
R(Y )⊆X

Y HBY=Ik

trace(Y HAY ). (17)

Any R(Y ) ⊆ X with Y HBY = Ik can be represented uniquely by Y = XŶ for some
Ŷ ∈ Cℓ×k such that Ŷ H(XHBX)Ŷ = Ik. So (16) becomes

min
R(Y )⊆X

Y HBY=Ik

trace(Y HAY ) = min
Ŷ H(XHBX)Ŷ=Ik

trace(Ŷ H(XHBX)Ŷ ) =
k∑

i=1

λ̂i.

This gives the second optimality of the Rayleigh-Ritz procedure.
The third optimality is concerned with the residual matrix

R(A1) := AX −BXA1.

If R(A1) = 0, then X is an exact invariant subspace. So it would make sense to make
∥R(A1)∥ as small as possible for certain matrix norm ∥ · ∥. The next theorem says the
optimal A1 is XHAX when X is a B-orthonormal basis matrix of X.

Theorem 2.4. Suppose X has B-orthonormal columns, i.e., XHBX = Ik, and let H =
XHAX. Then for any unitarily invariant norm1 ∥ · ∥ui

∥B−1/2 R(H)∥ui ≤ ∥B−1/2 R(A1)∥ui for all k-by-k A1. (18)

1Two common used unitarily invariant norms are the spectral norm ∥ · ∥2 and the Frobenius norm
∥ · ∥F. It is natural to think ∥B−1/2( · )∥ui as a B−1-unitarily invariant norm induced by a given unitarily
invariant norm ∥ · ∥ui. For example, the usual Frobenius norm can be defined by ∥C∥F :=

√
trace(CHC).

Correspondingly, we may define the B−1-Frobenius norm by ∥C∥B−1;F =
√

trace(CHB−1C).
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2.3 Steepest Descent Methods

The basic idea of the steepest descent (SD) method to minimize a function value is to
perform a line-search along the (opposite) direction of the gradient of the function at each
iteration step. Our function is ρ(x) defined by (7) whose gradient is given by

∇ρ(x) =
2

xHBx
r(x), (19)

where r(x) := Ax − ρ(x)Bx is the residual of (ρ(x), x) as an approximate eigenpair
of A − λB. Notice that ∇ρ(x) points to the same direction as r(x). Therefore, given
an approximation xxx to u1 and ∥xxx∥B = 1, one step of the steepest descent method for
computing (λ1, u1) is simply to perform a line-search:

inf
t∈C

ρ(xxx+ trrr), (20)

where rrr = r(x). Since xxxHrrr = 0, xxx and rrr are linearly independent unless rrr = 0 which
implies (ρ(xxx),xxx) is already an exact eigenpair. An easy to use stopping criteria is to check
if

∥r(xxx)∥2
∥Axxx∥2 + |ρ(xxx)| ∥Bxxx∥2

≤ rtol, (21)

where rtol is a given relative tolerance. When it is satisfied, (ρ(xxx),xxx) will be accepted as
a computed eigenpair.

We have to solve the line-search (20). Since such a problem arises often in the conjugate
gradient methods for A− λB, we consider the following more general line-search:

inf
t∈C

ρ(x+ tp), (22)

where the search direction p is the residual r(x) in the SD method but will be differ-
ent in the conjugate gradient method, for example. Suppose that x and p are linearly
independent; otherwise ρ(x+ tp) ≡ ρ(x) = ρ(p). It is not difficult to show that

inf
t∈C

ρ(x+ tp) = min
|ξ|2+|ζ|2>0

ρ(ξx+ ζp). (23)

Therefore the infimum in (22) is the smaller eigenvalue µ of the 2 × 2 matrix pencil
XHAX − λXHBX, where X = [x, p]. Let v = [ν1, ν2]

T be the corresponding eigenvector.
Then ρ(Xv) = µ. Note Xv = ν1x+ ν2p. We conclude

arginf
t∈C

ρ(x+ tp) =: topt =

{
ν2/ν1, if ν1 ̸= 0,

∞, if ν1 = 0.
(24)

Here topt = ∞ should be interpreted in the sense of taking t → ∞:

lim
t→∞

ρ(x+ tp) = ρ(p).

Accordingly, we have

ρ(y) = inf
t∈C

ρ(x+ tp), y =

{
x+ toptp if topt is finite,

p otherwise.
(25)
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Now the simple SD method can be readily stated. We leave it to the reader.
This simple SD method can be slowly convergent in practice. This happens when the

contours of ρ(x) on the sphere {x : xHx = 1} near the eigenvector u1 is very flat: very
long stretched in one or a few directions but very short compressed in other directions. So
rarely, this plain version is used in practice, but rather as a starting point for designing
faster variations of the method. In what follows, we will present three ideas some or all of
which can be combined to improve the method in practice. The three ideas are

• extending the search space,

• preconditioning the search direction,

• introducing block implementation.

We now explain the three ideas in detail.

Extending the search space. The key step of the SD method is the line-search (20)
which can be interpreted as seeking the best possible approximation ρρρnew:

ρρρnew = min
z∈span{xxx,rrr}

ρ(z) (26)

to λ1 through projecting A− λB to the 2-dimensional subspace spanned by

xxx, rrr = Axxx− ρρρBxxx = (A− ρρρB)xxx,

where ρρρ = ρ(xxx). This subspace is in fact the 2nd order Krylov subspace K2(A − ρρρB,xxx)
of A − ρρρB on xxx. Naturally, a way to accelerate the simple SD method is to use a larger
Krylov subspace, i.e., the mth order Krylov subspace Km(A−ρρρB,xxx) which is spanned by

xxx, (A− ρρρB)xxx, . . . , (A− ρρρB)m−1xxx.

A better approximation to λ1 is then obtained for m ≥ 3 since now they are achieved by
minimizing ρ(x) over a larger subspace that contains span{xxx,rrr} = K2(A− ρρρB,xxx):

ρρρnew = min
z∈Km(A−ρρρB,xxx)

ρ(z) (27)

This leads to the inverse free Krylov subspace method of Golub and Ye [12] but we will
call it the extended steepest descent method (ESD).

Theorem 2.5 ([12]). Suppose λ1 is simple, i.e., λ1 < λ2, and λ1 < ρρρ < λ2. Let ω1 <
ω2 ≤ · · · ≤ ωn be the eigenvalues of A−ρρρB and v1 be an eigenvector corresponding to ω1,
and let ρρρnew be defined by (27). Then

ρρρnew − λ1 ≤ (ρρρ− λ1)ϵ
2
m + 2(ρρρ− λ1)

3/2ϵm

(
∥B∥2
ω2

)1/2

+O(|ρρρ− λ1|2), (28)

where

ϵm := min
f∈Pm−1,f(ω1)=1

max
j>1

|f(ωj)| ≤ 2
[
∆m−1

η +∆−(m−1)
η

]−1
, (29)

η = ω2−ω1
ωn−ω1

and ∆η =
1+

√
η

1−√
η .
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There are a few other existing results for m = 2 and B = I. Kantorovich and Akilov
[21, p.617,1964] established

(ρρρnew − λ1)/(ρρρ− λ1) / ϵ2m

for completely continuous operators. Knyazev and Skorokhodov [22, 1991] obtained some-
thing that is stronger in the sense that it is a strict inequality (i.e., without the need
of ignoring high order terms). Samokish [45] presented an estimate on convergence rate
for the preconditioned steepest descent method. Although his technique was for the case
B = I, but can be made to work for the case B ̸= I after minor changes (see also [24, 37]).
We omit stating them to limit the length of this paper.

Preconditioning the search direction. The idea of preconditioning a linear system
Ax = b to KAx = Kb such that KA is “almost” the identity matrix before it is iteratively
solved is quite natural. After all if KA = I, we would have x = Kb immediately. Here
that KA is “almost” the identity matrix is understood either ∥KA− I∥ is relatively small
or KA− I is near a low rank matrix.

But there is no such an obvious and straightforward way to precondition the eigenvalue
problem Ax = λBx. How could any direction be more favorable than the steepest descent
one when it comes to minimize ρ(x)? After all, we are attempting to minimize the objective
function ρ(x).

In what follows, we shall offer two view points as to understand preconditioning an
eigenvalue problem and how an effective preconditioner should be approximately con-
structed.

The first view point is more intuitive. The rationale lies as follows. It is well-known
that when the contours of the objective function near its optimum are extremely elongated,
at each step of the conventional steepest descent method, following the search direction
which is the opposite of the gradient gets closer to the optimum on the line for a very
short while and then starts to get away because the direction doesn’t point “towards the
optimum”, resulting in a long zigzag path of a large number of steps. The ideal search
direction p is therefore the one such that with its starting point at xxx, p points to the
optimum, i.e., the optimum is on the line {xxx + tp : t ∈ C}. Specifically, expand xxx as a
linear combination of eigenvectors uj

xxx =
n∑

j=1

αjuj =: α1u1 + vvv, vvv =
n∑

j=2

αjuj . (30)

Then the ideal search direction is

p = αu1 + βvvv

for some scalar α and β ̸= 0 such that α1β − α ̸= 0 (otherwise p = βxxx). Of course, this is
impractical because we don’t know u1 and vvv. But we can construct one that is close to it.
One such p is

p = (A− σB)−1rrr = (A− σB)−1(A− ρρρB)xxx,

where2 σ is some shift near λ1 but not equal to ρρρ. Let us analyze this p. By (6), we find

p =

n∑
j=1

µjαjuj , µj :=
λj − ρρρ

λj − σ
. (31)

2We reasonably assume also σ ̸= λj for all other j, too.
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Now if λ1 ≤ ρρρ < λ2 and σ is also near λ1 but not equal to ρρρ and if the gap λ2 − λ1 is
reasonably modest, then

µj ≈ 1 for j > 1

to give a p ≈ αu1 + vvv, resulting in fast convergence. This rough but intuitive analysis
suggests that (A − σB)−1 with a suitably chosen shift σ can be used to serve as a good
preconditioner. Qualitatively, we have

Theorem 2.6. Let xxx be given by (30), and suppose α1 ̸= 0. If σ ̸= ρρρ such that

either µ1 < µj for 2 ≤ j ≤ n or µ1 > µj for 2 ≤ j ≤ n, (32)

where µj are defined in (31), then

tan θB(u1,Km) ≤ 2
[
∆m−1

η +∆−(m−1)
η

]−1
tan θB(u1,xxx), (33)

0 ≤ ρρρnew − λ1 ≤ 4
[
∆m−1

η +∆−(m−1)
η

]−2
tan θB(u1,xxx), (34)

where Km := Km([A− σB]−1(A− ρρρB),xxx), and

η =

{
λn−σ
λn−λ1

· λ2−λ1
λ2−σ , if µ1 < µj for 2 ≤ j ≤ n,

λ2−σ
λ2−λ1

· λn−λ1
λn−σ , if µ1 > µj for 2 ≤ j ≤ n,

∆η =
1 +

√
η

1−√
η
.

Proof. The proof is similar to the one in Saad [43] for the symmetric Lanczos method.

The assumption (32) is one of the two criteria for selecting a shift σ, and the other is
to make η close to 1. Three interesting cases are

• σ < λ1 ≤ ρ < λ2 under which µ1 is smallest

• λ1 < σ < ρ < λ2 under which µ1 is biggest

• λ1 < ρ < σ < λ2 under which µ1 is smallest.

Often σ is selected as a lower bound of λ1 as in the first case above, but it does not have
to be. As for η, it is 1 for σ = λ1, but since λ1 is unknown, the best one can hope is to
make σ ≈ λ1 through some kind of estimation.

In practice, because of high cost associated with (A− σB)−1, some forms of approxi-
mations to (A− σB)−1, such as those by incomplete decompositions LDLH of A− σB or
by iterative methods [9, 13, 14] CG, MINRES, or GMRES, are widely used.

The second view point is proposed by Golub and Ye [12], based on Theorem 2.5 which
reveals that the rate of convergence depend on the distribution of the eigenvalues ωj of
A− ρρρB, not those of the pencil A− λB as in the Lanczos algorithm. In particular, if all
ω2 = · · · = ωn, then ϵm = 0 for m ≥ 2 and thus

ρρρnew − λ1 = O(|ρρρ− λ1|2),

suggesting quadratic convergence. Such an extreme case, though highly welcome, is un-
likely to happen in practice, but it gives us an idea that if somehow we could transform
an eigenvalue problem towards such an extreme case, the transformed problem would be

11



easier to solve. Specifically we should seek equivalent transformations that change the
eigenvalues of A− ρρρB as much as possible to,

one smallest isolated eigenvalue ω1, and the rest
ωj (2 ≤ j ≤ n) tightly clustered,

(35)

but leave those of A − λB unchanged. This goal is much as the one for preconditioning
a linear system Ax = b to KAx = Kb for which a similar eigenvalue distribution for KA
like (35) will result in swift convergence by most iterative methods.

We would like to equivalently transform the eigenvalue problem for A−λB to L−H(A−
λB)L−1 by some nonsingular L (whose inverse or any linear system with L is easy to solve)
so that the eigenvalues of L−1(A− ρρρB)L−H distribute more or less like (35). Then apply
one step of ESD to the pencil L−1(A−λB)L−H to find the next approximation ρρρnew. The
process repeats.

Borrowed from the incomplete decomposition idea for preconditioning a linear system,
such an L can be constructed using the LDLH decomposition of A−ρρρB [13, p.139] if the
decomposition exists: A − ρρρB = LDLH, where L is lower triangular and D = diag(±1).
Then L−1(A − ρρρB)L−H = D has the ideal eigenvalue distribution that gives ϵm = 0 for
any m ≥ 2. Unfortunately, this simple solution is impractical in practice for the following
reasons:

1. The decomposition may not exist at all. In theory, the decomposition exists if all of
the leading principle submatrices of A− ρρρB are nonsingular.

2. If the decomposition does exist, it may not be numerically stable to compute, espe-
cially when ρρρ comes closer and closer to λ1.

3. The sparsity in A and B is most likely destroyed, leaving L significantly denser than
A and B combined. This makes all ensuing computations much more expensive.

A more practical solution is, however, through an incomplete LU factorization (see [44,
Chapter 10]), to get

A− ρρρB ≈ LDLH,

where “≈” includes not only the usual “approximately equal”, but also the case when
(A − ρρρB) − LDLH is approximately a low rank matrix, and D = diag(±1). Such an L
changes from one step of the algorithm to another. In practice, often we may use one
fixed preconditioner for all or several iterative steps. Using a constant preconditioner is
certainly not optimal: it likely won’t give the best rate of convergence per step and thus
increases the number of total iterative steps but it can reduce overall cost because it saves
work in preconditioner constructions and thus reduces cost per step. The basic idea of
using a step-independent preconditioner is to find a σ that is close to λ1, and perform an
incomplete LDLH decomposition of

A− σB ≈ LDLH

and transform A−λB accordingly before applying SD or ESD. Now the rate of convergence
is determined by the eigenvalues of

Ĉ = L−1(A− σB)L−H + (σ − ρρρ)L−1BL−H ≈ D

12



which would have a better spectral distribution so long as (σ − ρρρ)L−1BL−H is small
relative to Ĉ. When σ < λ1, A−σB ≻ 0 and the incomplete LDLH factorization becomes
incomplete Cholesky factorization.

We have insisted so far about applying SD or ESD straightforwardly to the transformed
problem. There is another way, perhaps, better: only symbolically applying SD or ESD
to the transformed problem as a derivation stage for a preconditioned method that always
projects the original pencil A − λB directly every step. The only difference is now the
projecting subspaces are preconditioned.

Suppose A − λB is transformed to Â − λB̂ := L−1(A − λB)L−H. Consider a typical
step of ESD applied to Â− λB̂. For the purpose of distinguishing notational symbols, we
will put hats on all those for Â− λB̂. The typical step of ESD is

compute the smallest eigenvalue µ and corresponding eigen-
vector v of ẐH(Â−λB̂)Ẑ, where Ẑ ∈ Cn×m is a basis matrix
of Krylov subspace Km(Â− ρ̂ρρB̂, x̂xx).

(36)

Notice
[
Â− ρ̂ρρB̂

]j
x̂xx = LH

[
(LLH)−1(A− ρ̂ρρB)

]j
(L−Hx̂xx) to see

L−H ·Km(Â− ρ̂ρρB̂, x̂xx) = Km(K(A− ρ̂ρρB),xxx),

where xxx = L−Hx̂xx and K = (LLH)−1. So Z = L−HẐ is a basis matrix of Krylov subspace
Km(K(A− ρ̂ρρB),xxx). Since also

ẐH(Â− λB̂)Ẑ = (L−HẐ)H(A− λB)(L−HẐ),

ρ̂ρρ =
x̂xxHÂ x̂xx

x̂xxHB̂ x̂xx
=

xxxHAxxx

xxxHBxxx
= ρρρ,

the typical step (36) can be reformulated equivalently to

compute the smallest eigenvalue µ and corresponding eigen-
vector v of ZH(A − λB)Z, where Z ∈ Cn×m is a ba-
sis matrix of Krylov subspace Km(K(A − ρρρB),xxx), where
K = (LLH)−1.

(37)

Introducing block implementation. The convergence rate of ESD with a precondi-
tioner K ≻ 0 is determined by the eigenvalues ω1 < ω2 ≤ · · · ≤ ωn of K1/2(A− ρρρB)K1/2

can still be very slow if λ2 is very close to λ1 relative to λn in which case ω1 ≈ ω2.
Often in practice, there are needs to compute the first few eigenpairs, not just the first

one. For that purpose, block variations of the methods become particularly attractive for
at least the following reasons:

1. they can simultaneously compute the first k eigenpairs (λj , uj);

2. they run more efficiently on modern computer architecture because more computa-
tions can be organized into matrix-matrix multiplication type;

3. they have better rates of convergence to the desired eigenpairs and save overall cost
by using a block size that is slightly bigger than the number of asked eigenpairs.
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In summary, the benefits of using a block variation are similar to those of using the
simultaneous subspace iteration vs. the power method [46].

A block variation starts with XXX ∈ Cn×nb with rank(XXX) = nb, instead of just one
vector xxx ∈ Cn previously for the single-vector steepest descent methods. Here either
the jth column of XXX is already an approximation to uj or the subspace R(XXX) is a good
approximation to the generalized invariant subspace spanned by uj for 1 ≤ j ≤ nb or the
canonical angles from R([u1, . . . , uk]) to R(XXX) are nontrivial, where k ≤ nb is the number
of desired eigenpairs. In the latter two cases, a preprocessing is needed to turn the case
into the first case:

1. solve the eigenvalue problem XXXH(A − λB)XXX to get (XXXHAXXX)W = (XXXHBXXX)WΩ,
where Ω = diag(ρρρ1, ρρρ2, . . . , ρρρnb

) is the diagonal matrix of eigenvalues in ascending
order, and W is the eigenvector matrix;

2. reset XXX :=XXXW .

So we will assume henceforth the jth column of the given XXX is an approximation to uj .
Now consider generalizing the steepest descent method to a block one. Its typical iterative
step may well look like the following. Let

XXX = [xxx1,xxx2, . . . ,xxxnb
] ∈ Cn×nb

whose jth column xxxj approximates uj and

Ω = diag(ρρρ1, ρρρ2, . . . , ρρρnb
)

whose jth diagonal entry ρρρj = ρ(xxxj) approximates λj . We may well assume XXX has B-
orthonormal columns, i.e., XXXHBXXX = I. Define the residual matrix

RRR = [r(xxx1), r(xxx2), . . . , r(xxxnb
)] = AXXX −BXXXΩ.

The key iterative step of the block steepest descent (BSD) method for computing the next
set of approximations is as follows:

1. compute a basis matrix Z of R([XXX,RRR]) by, e.g., MGS in the B-inner product, keeping
in mind that XXX has B-orthonormal columns already;

2. find the first nb eigenpairs of Z
HAZ−λZHBZ by, e.g., one of LAPACK’s subroutines

[1, p.25] because of its small scale, to get (ZHAZ)W = (ZHBZ)WΩnew, where
Ωnew = diag(ρρρnew;1, ρρρnew;2, . . . , ρρρnew;nb

);

3. set XXXnew = ZW .

This is in fact the stronger version of Simultaneous Rayleigh Quotient Minimization
Method , called SIRQIT-G2, in Longsine and McCormick [30]. To introduce the block
extended steepest descent (BESD) method, we notice that r(xxxj) = (A− ρρρjB)xxxj and thus

R([XXX,RRR]) =

nb∑
j=1

R([xxxj , (A− ρρρjB)xxxj ])

=

nb∑
j=1

K2(A− ρρρjB,xxxj).
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BESD is simply to extend each Krylov subspace K2(A−ρρρjB,xxxj) to a high order one, and
of course different Krylov subspaces can be expanded to different orders. For simplicity,
we will expand each to the mth order. The new extended search subspace now is

nb∑
j=1

Km(A− ρρρjB,xxxj). (38)

Define the linear operator

R : X ∈ Cn×nb → R(X) = AX −BXΩ ∈ Cn×nb .

Then the subspace in (38) can be compactly written as

Km(R, X) = span{XXX,R(XXX), . . . ,Rm−1(XXX)}, (39)

where Ri( · ) is understood as successively applying the operator R i times, e.g., R2(X) =
R(R(X)).

As to incorporate suitable preconditioners, in light of our extensive discussions before,
the search subspace should be modified to

nb∑
j=1

Km(Kj(A− ρρρjB),xxxj), (40)

where Kj are the preconditioners, one for each approximate eigenpair (ρρρj ,xxxj) for 1 ≤ j ≤
nb. As before, Kj can be constructed in one of the following two ways:

• Kj is an approximate inverse of A−ρ̃ρρjB for some ρ̃ρρj different from ρρρj , ideally closer to
λj than to any other eigenvalue of A−λB. But this requirement on ρ̃ρρj is impractical
because the eigenvalues of A − λB are unknown. A compromise would be to make
ρ̃ρρj close but not equal to ρρρj than to any other ρρρj .

• Perform an incomplete LDLH factorization (see [44, Chapter 10])A−ρjB ≈ LjDjL
H
j ,

where “≈” includes not only the usual “approximately equal”, but also the case when
(A−ρρρjB)−LjDjL

H
j is approximately a low rank matrix, andDj = diag(±1). Finally

set Kj = LjL
H
j .

Algorithm 2.2 is the general framework of a Block Preconditioned Extended Steepest
Descent method (BPESD) which embeds many steepest descent methods into one. In
particular,

1. With nb = 1, it gives various single-vector steepest descent methods:

• Steepest Descent method (SD): m = 2 and all preconditioners Kℓ;j = I;

• Preconditioned Steepest Descent method (PSD): m = 2;

• Extended Steepest Descent method (ESD): all preconditioners Kℓ;j = I;

• Preconditioned Extended Steepest Descent method (PESD).

2. With nb > 1, various block steepest descent methods are born:

• Block Steepest Descent method (BSD): m = 2 and all preconditioners Kℓ;j = I;

• Block Preconditioned Steepest Descent method (BPSD): m = 2;
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Algorithm 2.2 Extended Block Preconditioned Steepest Descent method

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb, and an integer m ≥ 2,
the algorithm attempts to compute approximate eigenpairs to (λj , uj) for 1 ≤ j ≤ nb.

1: compute the eigen-decomposition: (XH
0 AX0)W = (XH

0 BX0)WΩ0,
where WH(XH

0 BX0)W = I, Ω0 = diag(ρ0;1, ρ0;2, . . . , ρ0;nb
);

2: X0 ≡ [x0;1, x0;2, . . . , x0;nb
] = X0W ;

3: for ℓ = 0, 1, . . . do
4: test convergence and lock up the converged (detail to come later);
5: construct preconditioners Kℓ;j for 1 ≤ j ≤ nb;
6: compute a basis matrix Z of the subspace (40) with ρρρj = ρℓ;j and xxxj = xℓ+1;j ;
7: compute the nb smallest eigenvalues and corresponding eigenvectors of ZH(A −

λB)Z to get (ZHAZ)W = (ZHBZ)WΩℓ, where WH(ZHBZ)W = I, Ωℓ+1 =
diag(ρℓ+1;1, ρℓ+1;2, . . . , ρℓ+1;nb

);
8: Xℓ+1 ≡ [xℓ+1;1, xℓ+1;2, . . . , xℓ+1;nb

] = ZW ;
9: end for

10: return approximate eigenpairs to (λj , uj) for 1 ≤ j ≤ nb.

• Block Extended Steepest Descent method (BESD): all preconditionersKℓ;j = I;

• Block Preconditioned Extended Steepest Descent method (BPESD).

This framework is essentially the one implied in [40, section 4].
There are four important implementation issues to worry about in turning Algo-

rithm 2.2 into a piece of working code.
1. In (40), a different preconditioner is used for each and every approximate eigenpair
(ρℓ;j , xℓ;j) for 1 ≤ j ≤ nb. While, conceivably, doing so will speed up convergence for
each approximate eigenpair because each preconditioner can be constructed to make that
approximate eigenpair converge faster, but the cost in constructing these preconditioners
may likely be too heavy to bear. A more practical approach would be to use one pre-
conditioner Kℓ for all Kℓ;j aiming at speeding up the convergence of (ρℓ;1, xℓ;1) (or the
first few approximate eigenpairs for tightly clustered eigenvalues). Once it (or the first
few in the case of a tight cluster) is determined to be sufficiently accurate, the converged
eigenpairs are locked up and deflated and a new preconditioner is computed to aim at the
next non-converged eigenpairs, and the process continues. We will come back to discuss
the deflation issue, i.e., Line 4 of Algorithm 2.2.

2. Consider implementing Line 6, i.e., generating a basis matrix for the subspace (40). In
the most general case, Z can be gotten by packing the basis matrices of all

Km(Kℓ;j(A− ρℓ;jB), xℓ;j) for 1 ≤ j ≤ nb

together. There could be two problems with this: 1) such Z could be ill-conditioned, i.e.,
the columns of Z may not be sufficiently numerically linearly independent, and 2) the
arithmetic operations in building a basis for each Km(Kℓ;j(A − ρℓ;jB), xℓ;j) are mostly
matrix-vector multiplications, straying from one of the purposes: performing most arith-
metic operations through matrix-matrix multiplications in order to achieve high perfor-
mance on modern computers. To address these two problems, we do a tradeoff of using
Kℓ;j ≡ Kℓ for all j. This may likely degrade the effectiveness of the preconditioner per step
in terms of rate of convergence for all approximate eigenpairs (ρℓ;j , xℓ;j) but may achieve
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overall gain in using less time because then the code will run much faster in matrix-matrix
operations, not to mention the saving in constructing just one preconditioner Kℓ instead
of nb different ones. To simplify our discussion below, we will drop the subscript ℓ for
readability. Since Kℓ;j ≡ K for all j, (40) is the same as

Km(KR, X) = span{X,KR(X), . . . , [KR]m−1(X)}, (41)

where [KR]i( · ) is understood as successively applying the operator KR i times, e.g.,
[KR]2(X) = KRℓ(KR(X)). A basis matrix

Z = [Z1, Z2, . . . , Zm]

can be computed by the following block Arnoldi-like process in the B-inner product [40,
Algorithm 5].

1: Z1 = X (recall XHBX = Inb
already);

2: for i = 2 to m do
3: Y = K(AZi−1 −BΩZi−1);
4: for j = 1 to i− 1 do
5: T = ZH

j BY , Y = Y − ZjT ;
6: end for
7: ZiT = Y (MGS in the B-inner product);
8: end for

(42)

There is a possibility that at Line 7 of (42), Y is numerically not of full column rank. If it
happens, it poses no difficulty at all. In running MGS on Y ’s columns, anytime if a column
is deemed linearly dependent on previous columns, that column should be deleted, along
with the corresponding ρj from Ω to shrink its size by 1 as well. At the completion of
MGS, Zi will have fewer columns than Y and the size of Ω is shrunk accordingly. Finally,
at the end, the columns of Z are B-orthonormal, i.e., ZHBZ = I (of apt size) which may
fail to an unacceptably level due to roundoff; so some form of re-orthogonalization should
be incorporated.

4. At Line 4, a test for convergence are required. The same criteria (21) can be used:
(ρℓ;j , xℓ;j) is considered acceptable if

∥rℓ;j∥2
∥Axℓ;j∥2 + |ρℓ;j | ∥Bxℓ;j∥2

≤ rtol

where rtol is a pre-set relative tolerance. Usually the eigenvalues λj are converged to in
order, i.e., the smallest eigenvalues emerge first. All acceptable approximate eigenpairs
should be locked in, say, a kcvgd× kcvgd diagonal matrix3 DDD for converged eigenvalues and
an n× kcvgd tall matrix UUU for eigenvectors such that

AUUU ≈ BUUUDDD, UUUHBUUU ≈ I

to an acceptable level of accuracy. Every time a converged eigenpair is detected, delete
the converged ρℓ;j and xℓ;j from Ωℓ and Xℓ, respectively, and expand DDD and UUU to lock
up the pair, accordingly. At the same time, either reduce nb by 1 or append a (possibly
random) B-orthogonal column to X to maintain nb unchanged. There are two different
ways to avoid recomputing any of the converged eigenpairs – a process called deflation.

3In actual programming code, it is likely an 1-D array. But we use a diagonal matrix for the sake of
presentation.
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1. At Line 7 in the above block Arnoldi-like process (42), each column of Zj+1 is B-
orthogonalized against UUU .

2. Modify A − λB in form, but not explicitly, to (A + ζBUUUUUUHB) − λB, where ζ is a
real number intended to move λj for 1 ≤ j ≤ kcvgd to λj + ζ; so it should be selected
such that ζ + λ1 ≥ λkcvgd+nb+1.

But if there is a good way to pick a ζ such that ζ+λ1 ≥ λkcvgd+nb+1, the second approach is
easier to use in implementation than the first one for which, if not carefully implemented,
rounding errors can make R(Z) crawl into R(UUU) unnoticed.

2.4 Locally Optimal CG Methods

As is well-known, the slow convergence of the plain steepest descent method is due to the
extreme flat contours of the objective function near (sometimes local) optimal points. The
nonlinear conjugate gradient method is another way, besides preconditioning technique,
to move the searching direction away from the steepest descent direction. Originally, the
conjugate gradient (CG) method was invented in 1950s by Hestenes and Stiefel [17, 1952]
for solving linear system Hx = b with Hermitian and positive definite H, and later was
interpreted as an iterative method for large scale linear systems. This is so-called the linear
CG method [9, 13, 35]. In the 1960s, it was extended by Fletcher and Reeves [11, 1964]
as an iterative method for solving nonlinear optimization problems (see also [35, 48]). We
shall call the resulting method the nonlinear CG method. Often we leave out the word
“linear” and “nonlinear” and simply call either method the CG method when no confusion
can arise from this.

Because of the optimality properties (10) of the Rayleigh quotient ρ(x), it is natural
to apply the nonlinear CG method to compute the first eigenpair and, with the aid of
deflation, the first few eigenpairs of A − λB. The article [7, 1966] by Bradbury and
Fletcher seems to be the first one to do just that.

However, it is suggested [23] that the local optimal CG (LOCG) method [39, 49] is
more suitable for the symmetric eigenvalue problem. In its simplest form, LOCG for our
eigenvalue problem A − λB is obtained by simply modifying the line-search (26) for the
SD method to

ρρρnew = min
x∈span{xxx,xxxold, rrr}

ρ(x), (43)

where xxxold is the approximate eigenvector to u1 from the previous iterative step.
The three ideas we explained in the previous subsection to improve the plain SD

method can be introduced to improve the approximation given by (43), too, upon noticing
the search space in (43) is

K2(A− ρρρB,xxx) + R(xxxold),

making it possible for us to 1) extend the search space, 2) precondition the search direction
rrr, and 3) introduce block implementation, in the same way as we did for the plain SD
method.

All things considered, we now present an algorithmic framework: Algorithm 2.3, Locally
Optimal Block Preconditioned Extended Conjugate Gradient method (LOBPECG) which
has implementation choices:

• block size nb;

• preconditioners varying with iterative steps, with approximate eigenpairs, or not;
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• the dimension m of Krylov subspaces in extending the search subspace at each
iterative step. It may also vary with iterative steps, too.

Algorithm 2.3 Locally Optimal Block Preconditioned Extended Conjugate Gradient
method (LOBPECG)

Given an initial approximation X0 ∈ Cn×nb with rank(X0) = nb, and an integer m ≥ 2,
the algorithm attempts to compute approximate eigenpairs to (λj , uj) for 1 ≤ j ≤ nb.

1: compute the eigen-decomposition: (XH
0 AX0)W = (XH

0 BX0)WΩ0, where
WH(XH

0 BX0)W = I, Ω0 = diag(ρ0;1, ρ0;2, . . . , ρ0;nb
);

2: X0 ≡ [x0;1, x0;2, . . . , x0;nb
] = X0W , X−1 = 0;

3: for ℓ = 0, 1, . . . do
4: test convergence and lock up the converged;
5: construct preconditioners Kℓ;j for 1 ≤ j ≤ nb;
6: compute a basis matrix Z of the subspace

nb∑
j=1

Km(Kℓ;j(A− ρℓ;jB), xℓ;j) + R(Xℓ−1); (44)

7: compute the nb smallest eigenvalues and corresponding eigenvectors of ZH(A −
λB)Z to get (ZHAZ)W = (ZHBZ)WΩℓ, where WH(ZHBZ)W = I, Ωℓ+1 =
diag(ρℓ+1;1, ρℓ+1;2, . . . , ρℓ+1;nb

);
8: Xℓ+1 ≡ [xℓ+1;1, xℓ+1;2, . . . , xℓ+1;nb

] = ZW ;
9: end for

10: return approximate eigenpairs to (λj , uj) for 1 ≤ j ≤ nb.

The four important implementation issues we discussed for Algorithm 2.2 (BPESD)
after its introduction essentially apply here, except some changes are needed in the com-
putation of Z at Line 6 of Algorithm 2.3.

First Xℓ−1 can be replaced by something else while the subspace (44) remains the
same. Specifically, we modify Lines 2, 6, and 8 of Algorithm 2.3 to

2: X0 ≡ [x0;1, x0;2, . . . , x0;nb
] = X0W , and Y0 = 0;

6: compute a basis matrix Z of the subspace

nb∑
j=1

Km(Kℓ;j(A− ρℓ;jB), xℓ;j) + R(Yℓ) (45)

such that R(Z(:,1:nb)) = R(Xℓ), and let nZ be the number of the columns of Z;
8: Xℓ+1 ≡ [xℓ+1;1, xℓ+1;2, . . . , xℓ+1;nb

] = ZW , Yℓ+1 = Z(:,nb+1:nZ)W(nb+1:nZ ,:);

This idea is basically the same as the one in [18, 23]. Next we will compute a basis matrix
for the subspace (45) (or (44)). For better performance (by using more matrix-matrix
multiplications), we will assume Kℓ;j ≡ Kℓ for all j for simplification. Dropping the
subscript ℓ for readability, we see (45) is the same as

Km(KR, X) + R(Y ) = span{X,KR(X), . . . , [KR]m−1(X)}+ R(Y ). (46)

We will first compute a basis matrix [Z1, Z2, . . . , Zm] forKm(KR, X) by the Block Arnoldi-
like process in the B-inner product (42). In particular, Z1 = X. Then B-orthogonalize
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Y against [Z1, Z2, . . . , Zm] to get Zm+1 satisfying ZH
m+1BZm+1 = I. Finally take Z =

[Z1, Z2, . . . , Zm+1].

3 Min-Max Principles for a Positive Semidefinite Pencil

Let A − λB be an n × n positive semidefinite pencil, i.e., A and B are Hermitian and
there is a real scalar λ0 such that A−λ0B is positive semidefinite. Note that this does not
demand anything on the regularity of A − λB, i.e., a positive semidefinite matrix pencil
can be either regular (meaning det(A − λB) ̸≡ 0) or singular (meaning det(A − λB) ≡ 0
for all λ ∈ C).

Let the integer triplet (n−, n0, n+) be the inertia of B, meaning B has n− negative,
n0 0, and n+ positive eigenvalues, respectively. Necessarily

r := rank(B) = n+ + n−. (47)

We say µ ̸= ∞ is a finite eigenvalue of A− λB if

rank(A− µB) < max
λ∈C

rank(A− λB), (48)

and x ∈ Cn is a corresponding eigenvector if 0 ̸= x ̸∈ N(A) ∩N(B) satisfies

Ax = µBx, (49)

or equivalently, 0 ̸= x ∈ N(A − µB)\(N(A) ∩ N(B)). Let k+ and k− be two nonnegative
integers such that k+ ≤ n+, k− ≤ n−, and k+ + k− ≥ 1, and set

Jk =

[
Ik+

−Ik−

]
∈ Ck×k, k = k+ + k−. (50)

Theorem 3.1 ([29]). If A − λB is positive semidefinite, then A − λB has r = rank(B)
finite eigenvalues all of which are real.

In what follows, if A− λB is positive semidefinite, we will denote its finite eigenvalues
by λ±

i arranged in the order:

λ−
n− ≤ · · · ≤ λ−

1 ≤ λ+
1 ≤ · · · ≤ λ+

n+
. (51)

For the case of a regular Hermitian pencil A−λB (i.e., det(A−λB) ̸≡ 0), Theorem 3.2
is a special case of the ones considered in [6, 34]. For a diagonalizable positive semidefinite
Hermitian pencil A−λB with nonsingular B, Theorem 3.2 was implied in [26, 53]. Recall
that a positive semidefinite Hermitian pencil A− λB can be possibly a singular pencil; so
the condition of Theorem 3.2 does not exclude a singular pencil A − λB which was not
considered before [29, 2013], not to mention that B may possibly be singular.

Theorem 3.2. Let A−λB be a positive semidefinite Hermitian pencil. Then for 1 ≤ i ≤
n+

λ+
i = sup

X
codimX=i−1

inf
x∈X

xHBx=1

xHAx = sup
X

codimX=i−1

inf
x∈X

xHBx>0

xHAx

xHBx
, (52a)

λ+
i = inf

X
dimX=i

sup
x∈X

xHBx=1

xHAx = inf
X

dimX=i

sup
x∈X

xHBx>0

xHAx

xHBx
, (52b)
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and for 1 ≤ i ≤ n−,

λ−
i = − sup

X
codimX=i−1

inf
x∈X

xHBx=−1

xHAx = inf
X

codimX=i−1

sup
x∈X

xHBx<0

xHAx

xHBx
, (52c)

λ−
i = − inf

X
dimX=i

sup
x∈X

xHBx=−1

xHAx = sup
X

dimX=i

inf
x∈X

xHBx<0

xHAx

xHBx
. (52d)

In particular, setting i = 1 in (52) gives

λ+
1 = inf

xHBx>0

xHAx

xHBx
, λ−

1 = sup
xHBx<0

xHAx

xHBx
. (53)

All “ inf” and “ sup” can be replaced by “min” and “max” if A− λB is positive definite
or positive semidefinite but diagonalizable 4

The following theorem for the case when B is also nonsingular is due to Kovač-Striko
and Veselić [25, 1995]. But in this general form, it is due to [29].

Theorem 3.3 ([29]). Let A− λB be a Hermitian pencil of order n

1. Suppose A−λB is positive semidefinite. Let X ∈ Cn×k satisfying XHBX = Jk, and
denote by µ±

i the eigenvalues of XHAX − λXHBX arranged in the order:

µ−
k−

≤ · · · ≤ µ−
1 ≤ µ+

1 ≤ · · · ≤ µ+
k+

. (54)

Then

λ+
i ≤µ+

i ≤ λ+
i+n−k, for 1 ≤ i ≤ k+, (55)

λ−
j+n−k ≤µ−

i ≤ λ−
i , for 1 ≤ j ≤ k−, (56)

where we set λ+
i = ∞ for i > n+ and λ−

j = −∞ for j > n−.

2. If A− λB is positive semidefinite, then

inf
XHBX=Jk

trace(XHAX) =

k+∑
i=1

λ+
i −

k−∑
i=1

λ−
i . (57)

(a) The infimum is attainable, if there exists a matrix Xmin that satisfies XH
minBXmin =

Jk and whose first k+ columns consist of the eigenvectors associated with the
eigenvalues λ+

j for 1 ≤ j ≤ k+ and whose last k− columns consist of the eigen-

vectors associated with the eigenvalues λ−
i for 1 ≤ i ≤ k−.

(b) If A − λB is positive definite or positive semidefinite but diagonalizable, then
the infimum is attainable.

(c) When the infimum is attained by Xmin, there is a Hermitian A0 ∈ Ck×k whose
eigenvalues are λ±

i , i = 1, 2, . . . , k± such that

XH
minBXmin = Jk, AXmin = BXminA0.

4Hermitian pencil A − λB is diagonalizable if there exists a nonsingular matrix W such that both
WHAW and WHBW are diagonal.
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3. A− λB is a positive semidefinite pencil if and only if

inf
XHBX=Jk

trace(XHAX) > −∞. (58)

4. If trace(XHAX) as a function of X subject to XHBX = Jk has a local minimum,
then A− λB is a positive semidefinite pencil and the minimum is global.

4 Linear Response Eigenvalue Problem

We are interested in solving the standard eigenvalue problem of the form:[
0 K
M 0

] [
y
x

]
= λ

[
y
x

]
, (59)

where K and M are n× n real symmetric positive semidefinite matrices and one of them
is definite. We referred to it as a linear response (LR) eigenvalue problem because it is
equivalent to the original LR eigenvalue problem[

A B
−B −A

] [
u
v

]
= λ

[
u
v

]
(60)

via a simple orthogonal similarity transformation [2], where A and B are n× n real sym-

metric matrices such that the symmetric matrix

[
A B
B A

]
is symmetric positive definite5

[41, 51]. In computational physics and chemistry literature, it is this eigenvalue problem
that is referred to as the linear response eigenvalue problem (see, e.g., [36]), or random
phase approximation (RPA) eigenvalue problem (see, e.g., [15]).

While (59) is not a symmetric eigenvalue problem, it has the symmetric structure in
its submatrices and many optimization principles that are similar to those one usually find
in the symmetric eigenvalue problem. For example, (59) has only real eigenvalues. But
more can be said: its eigenvalues come in ±λ pairs. Denote its eigenvalues by

−λn ≤ · · · ≤ −λ1 ≤ +λ1 ≤ · · · ≤ +λn.

In practice, the first few positive eigenvalues and their corresponding eigenvectors are
needed. In 1961, Thouless [50] obtained a minimization principle for λ1, now known as
Thouless’ minimization principle, which equivalently stated for (59) is

λ1 = min
x,y

xTKx+ yTMy

2|xTy|
, (61)

provided both K ≻ 0 and M ≻ 0. This very minimization principle, reminiscent of the
first equation in (10), has been seen in action recently in, e.g., [8, 31, 33], for calculating
λ1 and, with aid of deflation, other λj .

Recently, Bai and Li [2] obtained Ky Fan trace min type principle, as well as Cauchy
interlacing inequalities.

Theorem 4.1 (Bai and Li [2]). Suppose that one of K, M ∈ Rn×n is definite.

5This condition is equivalent to that both A±B are positive definite. In [2, 3] and this article, we focus
on very much this case, except that one of A±B is allowed to be positive semidefinite.
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1. We have
k∑

i=1

λi =
1

2
inf

UTV=Ik
trace(UTKU + V TMV ). (62)

Moreover, “ inf” can be replaced by “min” if and only if both K and M are definite.
When they are definite and if also λk < λk+1, then for any U and V that attain
the minimum can be used to recovered λj for 1 ≤ j ≤ k and their corresponding
eigenvectors.

2. Let U, V ∈ Rn×k such that UTV is nonsingular. Write W = UTV = WT
1 W2, where

Wi ∈ Rk×k are nonsingular, and define

HSR =

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
. (63)

Denote by ±µi (1 ≤ i ≤ k) the eigenvalues of HSR, where 0 ≤ µ1 ≤ · · · ≤ µk. Then

λi ≤ µi ≤
√

min{κ(K), κ(M)}
cos∠(U,V) λi+n−k for 1 ≤ i ≤ k, (64)

where U = R(U) and V = R(V ), and κ(K) = ∥K∥2∥K−1∥2 and κ(M) = ∥M∥2∥M−1∥2
are the spectral condition numbers.

Armed with these minimization principles, we can work out extensions of the previously
discussed steepest descent methods in subsection 2.3 and conjugate gradient methods in
subsection 2.4 for the linear response eigenvalue problem (59). In fact, some extensions
have been given in [2, 3, 42].

5 Hyperbolic Quadratic Eigenvalue Problem

It was argued in [20] that the hyperbolic quadratic eigenvalue problem (HQEP) is the
closest analogue of the standard Hermitian eigenvalue problem Hx = λx when it comes
to the quadratic eigenvalue problem

(λ2A+ λB + C)x = 0. (65)

In many ways, both problems share common properties: the eigenvalues are all real, and
for HQEP there is a version of the min-max principles [10] that is very much like the
Courant-Fischer min-max principles.

When (65) is satisfied for a scalar λ and nonzero vector x, we call λ a quadratic
eigenvalue, x an associated quadratic eigenvector , and (λ, x) a quadratic eigenpair .

One source of HQEP (65) is dynamical systems with friction, where A, C are associ-
ated with the kinetic-energy and potential-energy quadratic form, respectively, and B is
associated with the Rayleigh dissipation function. When A, B, and C are Hermitian, and
A and B are positive definite and C positive semidefinite, we say the dynamical system is
overdamped if

(xHBx)2 − 4(xHAx)(xHCx) > 0 for any nonzero vector x. (66)

An HQEP is slightly more general than an overdamped QEP in that B and C are no
longer required positive definite or positive semidefinite, respectively. However, a suitable
shift in λ can turn an HQEP into an overdamped HQEP [16].
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In what follows, A, B, C ∈ Cn×n are Hermitian, A ≻ 0, and (66) holds. Thus (65) is
a HQEP for QQQ(λ) = λ2A+ λB + C ∈ Cn×n. Denote its quadratic eigenvalues by λ±

i and
arrange them in the order of

λ−
1 ≤ · · · ≤ λ−

n < λ+
1 ≤ · · · ≤ λ+

n . (67)

Consider the following equation in λ

f(λ, x) := xHQQQ(λ)x = λ2(xHAx) + λ(xHBx) + (xHCx) = 0, (68)

given x ̸= 0. Since QQQ(λ) is hyperbolic, this equation always has two distinct real roots (as
functions of x)

ρ±(x) =
−xHBx±

[
(xHBx)2 − 4(xHAx)(xHCx)

]1/2
2(xHAx)

. (69)

We shall call ρ+(x) the pos-type Rayleigh quotient of QQQ(λ) on x, and ρ−(x) the neg-type
Rayleigh quotient of QQQ(λ) on x.

Theorem 5.1 below is a restatement of [32, Theorem 32.10, Theorem 32.11 and Re-
mark 32.13]. However, it is essentially due to Duffin [10] whose proof, although for over-
damped QQQ, works for the general hyperbolic case. They can be considered as a general-
ization of the Courant-Fischer min-max principles (see [38, p.206], [47, p.201]).

Theorem 5.1 ([10]). We have

λ+
i = max

X⊆Cn

codimX=i−1

min
x∈X
x ̸=0

ρ+(x), λ+
i = min

X⊆Cn

dimX=i

max
x∈X
x ̸=0

ρ+(x), (70a)

λ−
i = max

X⊆Cn

codimX=i−1

min
x∈X
x ̸=0

ρ−(x), λ−
i = min

X⊆Cn

dimX=i

max
x∈X
x ̸=0

ρ−(x). (70b)

In particular,

λ+
1 = min

x ̸=0
ρ+(x), λ+

n = max
x ̸=0

ρ+(x), (71a)

λ−
1 = min

x ̸=0
ρ−(x), λ−

n = max
x ̸=0

ρ−(x). (71b)

To generalize Ky Fan trace min/max principle and Cauchy’s interlacing inequalities,
we introduce the following notations. For X ∈ Cn×k with rank(X) = k, XHQQQ(λ)X is a
k × k hyperbolic quadratic matrix polynomial. Hence its quadratic eigenvalues are real.
Denote them by λ±

i,X arranged as

λ−
1,X ≤ · · · ≤ λ−

k,X ≤ λ+
1,X ≤ · · · ≤ λ+

k,X .

Theorem 5.2. 1. [28] We have

min
rank(X)=k

k∑
j=1

λ±
j,X =

k∑
j=1

λ±
j , max

rank(X)=k

k∑
j=1

λ±
j,X =

k∑
j=1

λ±
n−k+j . (72)

2. [52] For X ∈ Cn×k with rank(X) = k,

λ+
i ≤ λ+

i,X ≤ λ+
i+n−k, i = 1, · · · , k, (73a)

λ−
j ≤ λ−

j,X ≤ λ−
j+n−k, j = 1, · · · , k. (73b)

Armed with these minimization principles, we can work out extensions of the previously
discussed steepest descent methods in subsection 2.3 and conjugate gradient methods in
subsection 2.4 for the HQEP QQQ(λ)x = 0. Details, among others, can be found in [28].
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