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ABSTRACT 

A new coronavirus, MERS-CoV (Middle East Respiratory Syndrome-Coronavirus) which is 
related to the coronavirus that caused the SARS outbreak 10 years ago, has been discovered in 
Saudi Arabia and observed in several other countries since 2012. A mathematical model is 
constructed in order to theorize possible patterns of the spread of this emerging disease which 
seems to require an extended contact time for transmission to occur. In order to better understand 
the role of population density on the spread of disease, the population is split into two groups, 
one with contact rates that are independent of population density and another group that has 
contact rates that are dependent on population density. Conditions under which the disease will 
spread are analyzed, and specifically, we note how population density affects the observed, 
theoretical dynamics and transmission characteristics predicted by the epidemiology model.  

INTRODUCTION 

Over the past fifteen years, outbreaks of various viruses in isolated regions have kept the global 
community vigilant due to the possibility of a global epidemic. The increase in global 
infrastructure and international travel has led to a greater threat of viruses such as H1N1 (swine 
flu), H7N9 (bird flu), and SARS [1]. Preventative restrictions on international travel can contain 
such a disease to avoid a global epidemic, but even an isolated outbreak in a country can have 
negative effects on the globe as a whole.  

One such virus that has recently caught the attention of many disease-control organizations is the 
one responsible for Middle East Respiratory Syndrome (MERS). Since June of 2012, when a 
businessman from the Bisha area of Saudi Arabia died from a severe respiratory illness, the 
World Health Organization has been closely monitoring the spread of this disease [1]. As of 
current, there have been 180 confirmed cases with 43% mortality rate [14]. The geographically 
distribution of these confirmed cases consists of sparse detection (~3) in various countries in the 
Middle East and Europe with all other cases (n=142) occurring in Saudi Arabia [6]. 

This virus is similar to the coronavirus responsible for the severe acute respiratory syndrome 
(SARS) outbreak in 2003, and has proven to be just as dangerous with, as a majority of cases 
result in pneumonia, renal failure and death [4]. MERS has proven to be quite fatal, but since the 
spread of the disease is much slower than that of SARS, preventative measures such as 
quarantines do not yet seem necessary [5]. It has been confirmed that MERS can spread by 

∗  This research was supported by an NSF UBM-Institutional grant, DUE#0827136, as part of the UTTER program at 
UT Arlington (http://www.uta.edu/math/utter/). 
† Department of Biology, The University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019-0498 
‡ Department of Mathematics, The University of Texas at Arlington, P.O. Box 19408, Arlington, TX 76019-0408 

1 
 

                                                 



human-to-human contact, but it is still not clear where it originated from. It is believed to be 
zoonotic though the animal vector is still unknown. However, recent isolation and screening of 
viruses present in bat dropping in Taphozous perforatus have found nearly identical viral 
sequences to that of MERS-CoV, suggesting that bats may be the natural reservoir [6].Further, it 
has been speculated that an extended period of contact is also required for transmission of the 
virus from an infected individual to a susceptible individual to take place [2].  

The SARS outbreak that occurred about 10 years ago was studied thoroughly for its patterns of 
spreading, but the preventative measure that was most successful in Hong Kong for preventing 
disease spread is still debated. Some argue that it was the reduced contact rate of infectious and 
susceptible individuals [9]. If that indeed is the case, then studying the effects of population 
density on the spread of disease is a logical next step to gaining more insight on how the spread 
of disease can possibly be minimized. 

At this stage, theoretical research is very valuable since little is known about the new coronavirus 
that causes MERS, especially in light of the location of many of the infected cases—Saudi 
Arabia—which just so happens to also be the site of the Hajj pilgrimage made by millions of 
Muslims from all around the world. 

There are two proposed models that have been classically used to describe epidemiology 
dynamics. The first model, mass action incidence, is a density-dependent model that assumes 
that the individuals’ daily encountering patterns are related to the size of the infected population. 
The momentum or drive of mass action incidence requires an extended exposure time and a 
threshold of individuals with the disease. This model is appropriately used to describe a small 
population size. An example of such is of a teacher and his or her class. When observing such a 
small size and extended time, a mass action incidence approach describes how this type of 
interaction will yield a nearly complete infection of the entire classroom.  

The other model, standard incidence, is density-independent. This model depends on the 
proportion of uninfected hosts relative to the total population. When the number of contacts per 
infected individuals is constant, there exists a threshold of infectivity that is only dependent on 
the contact number or basic reproduction number in order to determine whether the disease 
persists, but not the susceptible population. Typically, the disease will persist when infected 
individuals have enough contact time with susceptible individuals during their infectious period. 
That is, that the number of new cases increases along with the number of adequate contacts of 
infected individuals with susceptible individuals. This occurs due to the infectivity level of the 
disease. Since this level is constant, an increase of infectivity following the increase in 
susceptible population is not observed [12]. 

Our study attempts to note the consequences of both mass action and standard incidence on the 
control of the disease. Since there has been limited study on MERS, we wanted to simulate both 
conditions and the interactions between these populations to determine to what extent MERS can 
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affect the population. Ultimately, we study what conditions would optimally prevent this 
emerging viral disease from persisting. 

This study follows the standard compartmentalized modeling technique while adding a degree of 
originality by splitting the population into two groups based on dependency on population 
density: independent and dependent. The model also takes into account the necessity of a 
prolonged contact rate to transmit the infection. The paper uses qualitative analysis to show the 
general effect of a prolonged contact and also shows numerical analyses which utilize the most 
accurate parameter values available. 

In order to see the effects of population density we chose two cities that are described by high 
and low population densities. These exaggerated values of population density will help us 
observe population density’s effect on the spread of disease. We focus our studies on the two 
cities Zarqa and Sakib which are both located in Jordan. Zarqa was chosen as one of the focuses 
of our research because many cases of MERS had been reported in the city. Zarqa also is a large 
city with a high population density which fits well with our objective for this research. Sakib is a 
city located near Zarqa and is characterized by a much smaller population density. Other 
parameter values are based on the characteristics that describe the two cities.  

MODEL OVERVIEW 

In a conventional SIRS model, the individuals in the population are separated into three classes: 
susceptible individuals (S), infected individuals (I), and recovered individuals (R). The system is 
cyclic in nature as one individual starting in the susceptible class can become infected and move 
to the infected class, then can recover from the disease and, after a period of immunity, returns to 
the susceptible class once again.  

The simple, traditional SIRS model is modified in this paper in order to better see the effects of 
population density on epidemiological dynamics, but still holds the key principles of the 
traditional SIRS model as described before. The most notable modification that was introduced 
was the splitting of the population into two different groups (cf. Figure 0): one whose contacts 
with other individuals are independent of population density (N1=S1+I1+R1, Group 1), and one 
that has a contact rate that depends on population density (N2=S2+I2+R2, Group 2).  

We include a population whose contact rate is dependent on population density (Group 2) as well 
as a population whose contact rate is independent of population density (Group 1) to better 
illustrate the differences between them, and since the differential equations that describe the 
dynamics of each group are identical in every qualitative regard besides the inclusion of a 
multiplicative population density factor, we are better able to attribute the differences that we see 
in the dynamics of each group to the population density factor than if that were not the case. The 
model and details about its construction follow. 
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Fig. 0. Flow chart for the two-group model 
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MODEL CONSTRUCTION 

𝑑𝑆1
𝑑𝑡

 = 𝑝𝑟𝑁�1 − 𝑁
𝐾
� + θR1 - 𝛽1[ 𝛽1𝑁1

𝛽1𝑁1+𝛽2𝑁2𝑁
�𝐼1
𝑁1
�+ �1 − 𝛽1𝑁1

𝛽1𝑁1+𝛽2𝑁2𝑁
� 𝐼2
𝑁2

]S1 – dS1 

𝑑𝑆2
𝑑𝑡

 = (1 − 𝑝)𝑟𝑁�1 − 𝑁
𝐾
� + θR2 - 𝛽2𝑁[ 𝛽2𝑁2𝑁

𝛽1𝑁1+𝛽2𝑁2𝑁
� 𝐼2
𝑁2
�+ �1 − 𝛽2𝑁2𝑁

𝛽1𝑁1+𝛽2𝑁2𝑁
� 𝐼1
𝑁1

]S2 –dS2 

Many epidemiological models omit the births and deaths that occur in a population during an 
epidemic. However, we assume that these rates can be significant on the time-scale of our 
mathematical model, and would therefore be practical to include in the appropriate differential 
equations that are affected by these demographic renewal agents. 

To represent the growth rate of the population due to births, we employ a modified logistic 
growth expression, where N is the total population (N=N1+N2), K is the carrying capacity of the 
area, r is the maximum per capita reproductive rate, and p is the proportion of births that become 
members of the population N1. Reproduction in the N2 class is similar except that the proportion 
of individuals born into the N2 population is represented by (1 – p). 

The expressions that represent growth due to birth only appear in the differential equations for S1 
and S2 because of an assumption we make: immunity or infection cannot be passed to the 
offspring from the mother congenitally, and as a consequence, all individuals that are born 
during the time of this model’s simulation become a part of their respective susceptible 
populations as opposed to infected or recovered populations. 

Each susceptible population has a common per-capita death rate (d) which is multiplied by the 
size of the respective susceptible class to get the net decrease of the population due to natural 
death. This death rate, d is the same for both susceptible populations because our model has no 
reason to believe that population density has any effect on the natural death rate in this 
epidemiology study. 

Both susceptible populations increase as individuals who have recovered from the disease begin 
to lose their immunity over time. This per-capita rate is represented by theta (θ) and is multiplied 
by the respective recovered class to yield the number of individuals that return to the susceptible 
population from the recovered class. Again, theta is assumed to be the same for both recovered 
populations because population density is unlikely to affect the recovery rate.  

The most noteworthy difference between the differential equations for S1 and S2 are the 
expressions that represent a decrease in the susceptible population due to infection. The infection 
event for individuals that are a part of the first susceptible class is represented by  

1.  𝛽1[ 𝛽1𝑁1
𝛽1𝑁1+𝛽2𝑁2𝑁

�𝐼1
𝑁1
�+ �1 − 𝛽1𝑁1

𝛽1𝑁1+𝛽2𝑁2𝑁
� 𝐼2
𝑁2

]S1 = 𝛽1[ 𝛽1𝐼1+𝛽2𝐼2𝑁
𝛽1𝑁1+𝛽2𝑁2𝑁

]S1 
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whereas the same event for individuals that are a part of the second susceptible class is 
represented by  

2.  𝛽2𝑁[ 𝛽2𝑁2𝑁
𝛽1𝑁1+𝛽2𝑁2𝑁

� 𝐼2
𝑁2
�+ �1 − 𝛽2𝑁2𝑁

𝛽1𝑁1+𝛽2𝑁2𝑁
� 𝐼1
𝑁1

]S2 = 𝛽2𝑁[ 𝛽1𝐼1+𝛽2𝐼2𝑁
𝛽1𝑁1+𝛽2𝑁2𝑁

]S2. 

In essence, these expressions are just complex forms of the general expression that is used to 
showcase the infection event in most epidemiological models: 

𝛽
𝐼
𝑁

S 

The fractions in expression 1 that include a beta (β) term in both the numerator and the 
denominator are simply ratios that are utilized to show that infection of susceptible individuals 
from group 1 (S1) can take place by encountering infected individuals from either group 1 (I1) or 
group 2 (I2). The ratios more accurately specify the proportion of contacts made with either 
group. 

Likewise, the fractions in expression 2 that include beta terms are also ratios that are necessary to 
illustrate the concept of infection being able to arise as a consequence of susceptible individuals 
from group 2 (S2) encountering infected individuals from either group.  

The term 𝛽1 �
𝛽1𝑁1

𝛽1𝑁1+𝛽2𝑁2𝑁
�� 𝐼1

𝑁1
�S1 from expression 1 represents the number of contacts of S1 

individuals and I1 individuals that leads to transmission of the disease. In contrast, the term 
𝛽1 �1− 𝛽1𝑁1

𝛽1𝑁1+𝛽2𝑁2𝑁
�� 𝐼2

𝑁2
�S1 also from expression 1 represents the number of contacts of S1 

individuals and I2 individuals that leads to transmission of the disease. The same principles are 
used to construct the analogous expression for the second susceptible population. 

The entire term given by 1 gives us the number of contacts of S1 and both infectious classes that 
result in new cases of the disease in the N1 population. The same is true for new cases of the 
disease in the N2 population which is given by 2. 

An important distinction to bear in mind about these infection events for S1 and S2 is that S2’s 
infection event is multiplied by N while S1’s infection event is independent of N. This factor N 
acts to put a dependency on group 2’s epidemiology dynamics on population density.  

Many SIRS models assume that the infection event is not affected by population density, and this 
assumption is common for simple models. However, in order to see the effects of population 
density on the spread of disease, we introduce the concept of an infection event that varies with 
changes as population density changes through time, and this is accomplished by our N factor. 
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The construction of the differential equations that model the changes in the infected populations 
is more intuitive after the explanation for the rationale behind the construction of the differential 
equations for the susceptible populations.  

𝑑𝐼1
𝑑𝑡

 = 𝛽1 �
𝛽1𝐼1+𝛽2𝐼2𝑁

𝛽1𝑁1+𝛽2𝑁2𝑁
�S1 – γI1 – (d + δ)I1 

𝑑𝐼2
𝑑𝑡

 = 𝛽2𝑁[ 𝛽1𝐼1+𝛽2𝐼2𝑁
𝛽1𝑁1+𝛽2𝑁2𝑁

]S2 – γI2 – (d + δ)I2 

The infected populations increase by the infection events that decrease the susceptible 
populations, with I1 experiencing an increase with the same magnitude as the decrease 
experienced by S1 due to the infection event, and I2 experiencing an increase with the same 
magnitude as the decrease experienced by S2 due to the infection event.  

This class-transfer process highlights an important assumption: changing a person’s class doesn’t 
change their affiliation with the group they were initially a member of. For example, individuals 
that are a part of group 1, which has dynamics that are independent of population density, will 
remain a part of group 1 regardless of any sort of class change they experience (susceptible to 
infected, infected to recovered, or recovered to susceptible). The same is true for individuals that 
are members of group 2, which experiences epidemiological dynamics that are dependent on 
population density. This means that any individual will always or never be affected by the effects 
of population density. This exaggerated distinction between groups is important for identifying 
the role of population density on the spread of disease. And this biologically means that 
individuals will have the same type of lifestyle throughout the scope of this model because we 
assume that anyone’s dependency or independency of population density on contact rates is a 
result of their profession which is unlikely to change over the time of this model. 

The infection event is the only event that increases the size of the infected pool of individuals. 
There are two events that have a decreasing effect on the infected class: recovery and death. 

Unfortunate individuals that happen to contract the disease still have the chance to undergo full 
recovery. The rate of recovery is symbolized by gamma (γ), and this per-capita recovery rate is 
multiplied by the total population size of the infected class to measure the theoretical amount of 
individuals that will recover in a specified amount of time. Gamma is the same for both infected 
classes, as the recovery rate will most likely be constant across the entire population N, 
regardless of which group an individual is categorized into.  

The death rate of the infected populations is different from all the other classes. While the other 
classes have a death rate quantified by the per capita rate d, the infected classes have death rates 
that are quantified by d + δ, and this is rationalized by the idea that infected individuals will most 
likely have a death rate that is higher than the natural death rate if the disease has severe 
symptoms, which indeed is the case with MERS. In the case that a disease does not have lethal 
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effects, delta will be 0. Like many of the other per-capita rates, this elevated death rate for the 
infected classes is the same for both infected classes since population density will likely have 
little effect on the death rate of individuals.  

The differential equations that describe the dynamics of the recovered classes are much simpler 
because they have dynamics that do not directly depend on the complicated infection event. The 
changes in the recovered classes are only due to the simple, non-changing per-capita rates for 
recovery, death, and re-susceptibility or loss of immunity. 

𝑑𝑅1
𝑑𝑡

 = γI1 – θR1 – dR1 

𝑑𝑅2
𝑑𝑡

 = γI2 – θR2 – dR2 

The recovered class experiences an increase in their population as infected individuals recover, 
but decrease as recovered individuals lose their immunity and as recovered individuals die. 

After a certain period of time, individuals become susceptible to the disease again since their 
immunity to the disease is only temporary, as is the case with the related disease, SARS.  

Recovered individuals are also vulnerable to death, and they experience the same death rate, d as 
susceptible individuals. When an infected individual recovers, he or she will lose their disease 
related symptoms, one of them being the elevated death rate. Recovered individuals have no 
advantage over susceptible individuals for escaping natural death and therefore share the same 
per-capita death rate, d. 

MODEL  SYMBOLS 

There are quite a few symbols that were used in the construction of this epidemiology model. 
The tables that follow offer a concise overview of their role in the model. 

Table 1 offers a brief description of the details concerning the differential equations that 
constitute the mathematical model for this study. 

Symbol Description Units Notes 

𝑑𝑆1
𝑑𝑡

,𝑑𝐼1
𝑑𝑡

,𝑑𝑅1
𝑑𝑡

 
 

Change in class (S1, I1, or 
R1) population density over 
time # 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠

𝑘𝑚2 ∗ 𝑑𝑎𝑦
 

Group 1 – 
Contacts are 
independent of 
population density 

𝑑𝑆2
𝑑𝑡

,𝑑𝐼2
𝑑𝑡

,𝑑𝑅2
𝑑𝑡

 
 

Change in class(S2, I2, or 
R2) population density over 
time 

Group 2 – 
Contacts are 
dependent on 
population density 

 Table 1. Condensed explanation of differential equations 
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In order to condense the mathematical equations that were used in this model, some variables 
were grouped, and Table 2 shows the groupings that are made for this model. The subscript of 
each variable denotes the group number of which that class is a part. 

Symbol Description Units 
N1 S1 + I1 + R1 # 𝑝𝑒𝑜𝑝𝑙𝑒

𝑘𝑚2  N2 S2 + I2 + R2 
N N1 + N2 

 

There are several parameters that are used in this model, and Table 3 provides a description, as 
well as an estimation for their numerical value, for all the parameter symbols that are used in the 
differential equations that comprise the epidemiology model. 

 

Symbol  Description Numerical Value Units 

β1 Contact rate of an individual in 
Group 1 and someone else .1 

1
𝑑𝑎𝑦

 

β2N Contact rate of an individual in 
Group 2 and someone else (.000035)N 

𝑘𝑚2

𝑑𝑎𝑦 ∗ #𝑝𝑒𝑜𝑝𝑙𝑒
 

r Reproductive factor 1 
1
𝑑𝑎𝑦

 

k Carrying capacity High – 13500 
Low – 400 

#𝑝𝑒𝑜𝑝𝑙𝑒
𝑘𝑚2

 

d Natural death rate .00003731 
1
𝑑𝑎𝑦

 

δ Increased risk of death due to 
infection .048 

1
𝑑𝑎𝑦

 

γ Recovery rate .036 
1
𝑑𝑎𝑦

 

θ Re-susceptibility or loss of 
immunity rate .0009132 

1
𝑑𝑎𝑦

 

p Proportion of individuals born into 
Group 1 .5 N/A 

1 – p Proportion of individuals born into 
Group 2 .5 N/A 

 

The parameter that describes the per-capita reproduction rate, r is given a numerical value of 1 
1

𝑑𝑎𝑦
. The positive value of r indicates that the population is growing, which follows the pattern 

Table 3. Parameter list 

Table 2. Shorthand for class groups 
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observed for the population size of the areas of interest in Jordan [9]. The exact value of r 
seemed a bit arbitrary though since extreme values of r didn’t seem to affect the qualitative or 
even quantitative dynamics of the populations much.  

The areas (Zarqa and Sakib) that are under study with this model have populations that are 
steadily increasing, but at a low percentage. We therefore deemed it to be appropriate to give the 
population a carrying capacity that was near, but greater than its initial population size. 

β1 is a parameter that represents the contact rate of an individual from Group 1 with another 
person in the population, independent of which group the other person belongs, while β2N is 
another parameter that describes the contact rate of an individual from Group 2 with anyone else 
in the population, regardless of group affiliation.  

There isn’t much useful research available to quantify the numerical value of the β1 parameter, 
but using the value of .1 1

𝑑𝑎𝑦
 in conjunction with the numerical value of β2 gives us interesting 

epidemiology dynamics while other values do not. 

β2 is given a numerical value that is much lower than that of β1 in order to counteract the factor 
of N. Since N is multiplied only to β2 and not to β1, we gave β2 a smaller value so that β2N and β1 
are somewhat comparable. Otherwise, dynamics would be greatly exaggerated for the 
populations described with β2N. For this reason, β2 is given a value that is on the order of 3 
magnitudes lower than β1, which corresponds to the magnitude of increase that the N factor for 
population density provides. After this balancing of values, we observe what values of β2 give 
the most interesting epidemiology dynamics and we settle on a numerical value of .000035 1

𝑑𝑎𝑦
.  

The natural death rate ( 1
𝑑𝑎𝑦

) was calculated to be the inverse of the life expectancy of the average 

person in days. Since our study is focused on areas located in Jordan, the inverse of the life 
expectancy of the average citizen of Jordan was taken and applied to the natural death rate [7]. 

There is little data in the scientific literature about MERS since it has only been discovered 
recently. As a consequence of the limited amount of research that has been done on MERS, 
many parameter values had to be estimated. Following the idea that MERS is a coronavirus and 
is related to SARS, another coronavirus, estimates were based off of the data that was able to be 
gathered from the research that had been done on SARS. The elevated death rate due to infection 
(δ), recovery rate (γ), and re-susceptibility rate (θ) were estimated based on data from SARS 
research, and these rates are all measured in units of 1

𝑑𝑎𝑦
. 

It was observed that individuals that had died due to SARS, died within a period of 
approximately 3 weeks [8]. This time was inverted then converted into days to get the daily rate 
of death for infected individuals (d + δ). Delta was calculated by subtracting the natural death 
rate from this infected death rate that was just calculated 
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It was also seen that full recovery from SARS was able to take place, but only after a period of 
time that was longer than the average time for SARS to cause a death [8]. This model used the 
inverse of 28 days (1 week longer than the elevated death rate for SARS) to approximate the 
value for the daily rate of recovery (γ). This recovery rate and the elevated death rate correspond 
well with each other and give us a mortality rate that is about 60%, as observed from the 
literature. 

It was observed that, antibodies specific for SARS were retained in the body for a long period of 
time, and other specific immune response factors persisted for a period of about 3 years. We 
therefore proposed a small, but significant daily rate of loss of immunity (θ) which is the inverse 
of 3 years, after being converted to days. 

In order to quantify the value for p (and thus the value for 1-p), we first assume that the 
proportion of individuals of N1 to individuals of N2 (N1/N2) would remain unchanged over the 
course of the epidemic, which isn’t unreasonable considering the time-scope of the model. Under 
this assumption, we observe that p would be equal to the size of N1 divided by the size of the 
total population, N. But in order to keep the model simple, we make p equal to the initial value 
of N1 divided by the initial size of the entire population, N (N1+N2). This avoids the problem of 
introducing more variables into the already complex model. This method also allows the increase 
experienced by each susceptible population by births to be an increase that is weighted by their 
initial population size. 

Quantifying the specific numeric values of p (p corresponds to proportion of births in Group 1, 
while (1-p) corresponds to proportion of births in Group 2) include estimating the proportion of 
the population whose contact rate is unaffected by population density, and in order to estimate 
the numeric value for p, we must take into account how the people in the total population spend 
their time. After some thought and deliberation, we speculate that p could likely be .5, although 
we will offer situations in which the value of p is changed in order to see the effects of a shifted 
proportion on disease dynamics. Even if p is significantly different from .5, the numerical value 
of .5 for the proportion is useful in better distinguishing the effects of population density on 
disease dynamics because this gives both populations equal weight in their growth due to 
reproduction and their initial population size. 

MODEL ANALYSIS 

Equilibria—When observing population dynamic trends in a mathematical model, researchers 
generally search for states of no change, called equilibria. Equilibrium values of each population 
can be calculated by setting their respective differential equations to zero and solving for the 
variable of interest. 

Disease-free equilibria: 
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In the case of having no disease present, infected and recovered individuals become zero, and all 
terms being multiplied by those variables become zero as a consequence. In this special situation, 
our model becomes more simplified since there are no non-susceptible individuals, and the 
differential equations describing the susceptible individuals become simpler as well: 

𝑑𝑆1
𝑑𝑡

 = 𝑝𝑟𝑁�1 − 𝑁
𝐾
�– dS1 = 𝑝𝑟(𝑆1 + 𝑆2) �1− 𝑆1+𝑆2

𝐾
�– dS1 = 0 

𝑑𝑆2
𝑑𝑡

 = (1 − 𝑝)𝑟𝑁�1 − 𝑁
𝐾
�–dS2 = (1 − 𝑝)𝑟(𝑆1 + 𝑆2) �1− 𝑆1+𝑆2

𝐾
�–dS2 = 0 

and since the entire population N is comprised only of susceptible individuals, we can replace N 
with S1 + S2. After equating these new expressions to zero, we solve for S1 in the first differential 
equation and S2 in the second differential equation to get equilibria expressions for the two 
populations: 

S1 =  𝑝𝐾(1−𝑑
𝑟) , S2 = (1− 𝑝)𝐾(1− 𝑑

𝑟) 

Endemic equilibria: 

The scenario of endemic equilibria restricts us from making the simplifications that we were able 
to make when calculating the disease-free equilibria. This is because both groups have non-
negligible population sizes for the infected and recovered classes which prohibit us from 
ignoring their contributions in the differential equations in which they appear. Furthermore, the 
complex nature of the differential equations prevents us from being able to find an analytical 
expression for any of the populations in terms of parameters. However, graphical and numerical 
evaluations provide evidence for the existence of endemic equilibrium. 
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Fig. 1 Illustrates the theoretical dynamics of disease in a region of high population density 

 

Fig. 2 Depicts the theoretical dynamics of disease in a region of low population density 

Some of the populations are still changing near the end of the graphs, but if time is extended 
farther, equilibrium is established. 
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As seen in Fig. 1, it appears that group 2, the group that has contact rates that are dependent on 
population density, experiences dynamics that are similar to that of group 1, but are exaggerated. 
The corresponding increases and decreases taking place in the first group happen sooner and 
occur to a higher degree in the second group.  

Equilibrium values for each group correspond to this observation with the susceptible population 
in group 2 being lower than the susceptible population in group 1 and both the infected and 
recovered populations from group 1 being lower than the infected and recovered populations in 
group 2.  

The higher equilibrium value for the susceptible population in group 1 (compared with the 
equilibrium value for the susceptible population in group 2) correlates well with the idea that the 
populations from group 2, which had contact rates that were dependent on population density are 
affected to a higher degree than the populations that had contact rates that were not dependent on 
population density.  

The same logic follows for the observations for the other groups. I1,eq <  I2,eq is observed and also 
contributes to the idea formulated from the relationship between S1,eq and S2,eq (S1,eq > S2,eq), that 
group 2 has exaggerated dynamics because it has contact rates that are dependent on population 
density, given the setting of a high population density. R1,eq <  R2,eq is true since there are more 
infected individuals in group 2 that can recover. 

In contrast, Fig. 2 shows the opposite pattern evidenced in Fig. 1: group 1 has dynamics that vary 
more than group 2 in a low population density setting, and equilibrium relationships between 
corresponding groups are reversed: S1,eq <  S2,eq, I1,eq >  I2,eq, and R1,eq >  R2,eq. The reversal of the 
patterns observed from Fig. 1 in Fig. 2 can be attributed to the small population density used in 
the model since all other parameter values were held constant. 

Stability of equilibria— 
Stability of disease-free equilibrium: 
 
The disease-free equilibrium that was found earlier can be tested for stability mathematically by 
setting up an appropriate Jacobian matrix, and finding the corresponding eigenvalues. The 
Jacobian matrix we constructed has the structure 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜕
𝜕𝑆1

(
𝑑𝑆1
𝑑𝑡 )

𝜕
𝜕𝑆2

(
𝑑𝑆1
𝑑𝑡 )

𝜕
𝜕𝐼1

(
𝑑𝑆1
𝑑𝑡 )

𝜕
𝜕𝐼2

(
𝑑𝑆1
𝑑𝑡 )

𝜕
𝜕𝑅1

(
𝑑𝑆1
𝑑𝑡 )

𝜕
𝜕𝑅2

(
𝑑𝑆1
𝑑𝑡 )

𝜕
𝜕𝑆1

(
𝑑𝑆2
𝑑𝑡 )

𝜕
𝜕𝑆2

(
𝑑𝑆2
𝑑𝑡 )

𝜕
𝜕𝐼1

(
𝑑𝑆2
𝑑𝑡 )

𝜕
𝜕𝐼2

(
𝑑𝑆2
𝑑𝑡 )

𝜕
𝜕𝑅1

(
𝑑𝑆2
𝑑𝑡 )

𝜕
𝜕𝑅2

(
𝑑𝑆2
𝑑𝑡 )

𝜕
𝜕𝑆1

(
𝑑𝐼1
𝑑𝑡 )

𝜕
𝜕𝑆2

(
𝑑𝐼1
𝑑𝑡 )

𝜕
𝜕𝐼1

(
𝑑𝐼1
𝑑𝑡 )

𝜕
𝜕𝐼2

(
𝑑𝐼1
𝑑𝑡 )

𝜕
𝜕𝑅1

(
𝑑𝐼1
𝑑𝑡 )

𝜕
𝜕𝑅2

(
𝑑𝐼1
𝑑𝑡 )

𝜕
𝜕𝑆1

(
𝑑𝐼2
𝑑𝑡 )

𝜕
𝜕𝑆2

(
𝑑𝐼2
𝑑𝑡 )

𝜕
𝜕𝐼1

(
𝑑𝐼2
𝑑𝑡 )

𝜕
𝜕𝐼2

(
𝑑𝐼2
𝑑𝑡 )

𝜕
𝜕𝑅1

(
𝑑𝐼2
𝑑𝑡 )

𝜕
𝜕𝑅2

(
𝑑𝐼2
𝑑𝑡 )

𝜕
𝜕𝑆1

(
𝑑𝑅1
𝑑𝑡 )

𝜕
𝜕𝑆2

(
𝑑𝑅1
𝑑𝑡 )

𝜕
𝜕𝐼1

(
𝑑𝑅1
𝑑𝑡 )

𝜕
𝜕𝐼2

(
𝑑𝑅1
𝑑𝑡 )

𝜕
𝜕𝑅1

(
𝑑𝑅1
𝑑𝑡 )

𝜕
𝜕𝑅2

(
𝑑𝑅1
𝑑𝑡 )

𝜕
𝜕𝑆1

(
𝑑𝑅2
𝑑𝑡 )

𝜕
𝜕𝑆2

(
𝑑𝑅2
𝑑𝑡 )

𝜕
𝜕𝐼1

(
𝑑𝑅2
𝑑𝑡 )

𝜕
𝜕𝐼2

(
𝑑𝑅2
𝑑𝑡 )

𝜕
𝜕𝑅1

(
𝑑𝑅2
𝑑𝑡 )

𝜕
𝜕𝑅2

(
𝑑𝑅2
𝑑𝑡 )⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The characteristics (sign and complexity) of the applicable eigenvalue (λ) will determine the 
stability of the disease-free equilibrium. 

det

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕
𝜕𝑆1

(𝑑𝑆1
𝑑𝑡

) –  λ 𝜕
𝜕𝑆2

(𝑑𝑆1
𝑑𝑡

) 𝜕
𝜕𝐼1

(𝑑𝑆1
𝑑𝑡

) 𝜕
𝜕𝐼2

(𝑑𝑆1
𝑑𝑡

) 𝜕
𝜕𝑅1

(𝑑𝑆1
𝑑𝑡

) 𝜕
𝜕𝑅2

(𝑑𝑆1
𝑑𝑡

)
𝜕
𝜕𝑆1

(𝑑𝑆2
𝑑𝑡

) 𝜕
𝜕𝑆2

(𝑑𝑆2
𝑑𝑡

) –  λ 𝜕
𝜕𝐼1

(𝑑𝑆2
𝑑𝑡

) 𝜕
𝜕𝐼2

(𝑑𝑆2
𝑑𝑡

) 𝜕
𝜕𝑅1

(𝑑𝑆2
𝑑𝑡

) 𝜕
𝜕𝑅2

(𝑑𝑆2
𝑑𝑡

)
𝜕
𝜕𝑆1

(𝑑𝐼1
𝑑𝑡

) 𝜕
𝜕𝑆2

(𝑑𝐼1
𝑑𝑡

) 𝜕
𝜕𝐼1

(𝑑𝐼1
𝑑𝑡

) –  λ 𝜕
𝜕𝐼2

(𝑑𝐼1
𝑑𝑡

) 𝜕
𝜕𝑅1

(𝑑𝐼1
𝑑𝑡

) 𝜕
𝜕𝑅2

(𝑑𝐼1
𝑑𝑡

)
𝜕
𝜕𝑆1

(𝑑𝐼2
𝑑𝑡

) 𝜕
𝜕𝑆2

(𝑑𝐼2
𝑑𝑡

) 𝜕
𝜕𝐼1

(𝑑𝐼2
𝑑𝑡

) 𝜕
𝜕𝐼2

(𝑑𝐼2
𝑑𝑡

) –  λ 𝜕
𝜕𝑅1

(𝑑𝐼2
𝑑𝑡

) 𝜕
𝜕𝑅2

(𝑑𝐼2
𝑑𝑡

)
𝜕
𝜕𝑆1

(𝑑𝑅1
𝑑𝑡

) 𝜕
𝜕𝑆2

(𝑑𝑅1
𝑑𝑡

) 𝜕
𝜕𝐼1

(𝑑𝑅1
𝑑𝑡

) 𝜕
𝜕𝐼2

(𝑑𝑅1
𝑑𝑡

) 𝜕
𝜕𝑅1

(𝑑𝑅1
𝑑𝑡

) –  λ 𝜕
𝜕𝑅2

(𝑑𝑅1
𝑑𝑡

)
𝜕
𝜕𝑆1

(𝑑𝑅2
𝑑𝑡

) 𝜕
𝜕𝑆2

(𝑑𝑅2
𝑑𝑡

) 𝜕
𝜕𝐼1

(𝑑𝑅2
𝑑𝑡

) 𝜕
𝜕𝐼2

(𝑑𝑅2
𝑑𝑡

) 𝜕
𝜕𝑅1

(𝑑𝑅2
𝑑𝑡

) 𝜕
𝜕𝑅2

(𝑑𝑅2
𝑑𝑡

) –  λ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 = 0 

 
 

Basic Reproduction Number (R0)—The value of R0 in an epidemiological model can be 
thought of as the average number of new cases one infected individual can create when placed in 
a population of susceptible individuals. The next generation operator approach developed by 
Diekmannet al. (1990) was used to determine the value of R0 [10]. This method involves 
creating a Jacobian matrix using equations representative of the infectious classes and 
manipulating the result into the next generation matrix with the form of A=MD-1 where M>1 and 
D>1. In our case the next generation matrix is a two-by-two matrix where the eigenvalues can be 
found using the quadratic formula in the following form:  

𝜆 =
(a + d) ± �(𝑎+ 𝑑)2 − 4(𝑎𝑑 − 𝑏𝑐)

2
 

Where values of a, b, c and d correspond to the entries of matrix A. 
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𝐴 = �𝑎 𝑏
𝑐 𝑑� 

 The analysis showed that det(A)=0. Since the det(A) is the same as the product of the 
eigenvalues, the positive, non-zero eigenvalue is equal to tr(A)(the sum of the eigenvalues). 
Therefore, 

𝑅0 = �
𝛽1(𝛽1𝑃) + 𝛽2𝑁(𝛽2𝑁(1− 𝑃))

𝛽1𝑃+ 𝛽2𝑁(1−𝑃) ��
1

𝛿 + 𝛾 + 𝜃
� 

This value of R0 consists of the average rate of infectivity weighted by each group’s number of 
contacts, multiplied bythe average amount of time that an individual spends in the infected class. 
Through this value we can determine whether the disease-free equilibrium will be locally stable 
with a given set of parameter values.  

In order to see where the two R0 values are derived from, we re-write the original R0 equation: 

R0 = � 𝛽1
𝛿+𝛾+𝜃

� � 𝛽1𝑃
𝛽1𝑃+𝛽2𝑁(1−𝑃)

�+� 𝛽2𝑁
𝛿+𝛾+𝜃

� � 𝛽2𝑁(1−𝑃)
𝛽1𝑃+𝛽2𝑁(1−𝑃)

� 

Since the expressions in the square brackets are known to just be proportionality terms for 

contacts, we know that the expressions� 𝛽1
𝛿+𝛾+𝜃

�and � 𝛽2𝑁
𝛿+𝛾+𝜃

�symbolize R01 and R02, 

respectively. 

In some interesting cases we may also be able to observe situations where the individual R0 in 
one group is greater than one while the other group’s R0 is less than one. This situation can arise 
by analyzing the respective R0 values for each population, R01 for Group 1 and R02 for Group 2.  
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If analyzed graphically, it would be clear that the group with R0 greater than one would have an 
endemic equilibrium numerically greater than that of the other group. However, since individuals 
in both groups can contact one another, the disease would still persist in the group where R0 is 
less than one, even if the numerical value of the endemic equilibrium is miniscule. 

Fig. 3 Shows how R0 varies as a function of p for different values of N 

With the given set of parameter values, a threshold value of N was discovered where, above this 
threshold and regardless of the value of p, R0 > 1. Mathematically, this is caused by higher values 
of N increasing the numerator more than they increase the denominator (N is squared in the 
numerator), and also because the value of β1is great enough to cause an assignment of p=1 to 
yield an R0 > 1.  

When N is less than the threshold value, values of p exist where R0 < 1. This refers to instances 
where the density dependent group’s contribution to R0 is small enough that when p < 0.5, the 
total R0 is less than one. However, when p=1 for any value of N, R0 > 1 with the current value of 
β1. 

Further analysis reveals a mathematical phenomena in which R0 shoots up as N approaches zero 
with the limit being the constant R0 value when p=1. Figure 4 shows this interesting result by 
comparing the relationship between R0, N, and p.  
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Fig. 4: Relationship between R0, N, and p. 

This occurs because as N approaches 0, the ratio of contacts occurring are all in group 1 with 
other individuals in group 1, that is, the R0 for group 2 is almost 0. Therefore, nearly all contacts 
rely on the contact rate of group 1 which is the constant value R01. Consider R0 as separate 
values again. As N approaches 0, R02 goes to 0 while R01 remains constant.  

 

Fig. 5: Effects of population Density on R0 for different values of p. Straight solid line: p=1; dashed line: p=0; thick 
curve: p=0.5; thin curve: p=0.25. 

A more biologically relevant result of this model is represented in Figure 5. The horizontal 
straight line and the straight dashed line in this figure represent trends where p=1 and p=0 
respectively. Any p value between 0 and 1 will produce a curve that lies between the two straight 
lines and will have a shape close to the two example curves where p=0.5 (thicker line) and 
p=0.25 (thin line). The significance of these curves is that there are local minima at certain 
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values of N where R0<1. In the examples shown, the curve where p=0.25 has a local minima 
where the population density is around 950 people.  

Discussion 

After analyzing the theoretical patterns of development of the disease in two sub-populations in 
two areas of different population densities, we can make some general conclusions. 

Because of the significant differences in the dynamics of each group in the two scenarios 
explored (high and low population densities—Fig. 1 and 2 respectively), and because the main 
difference between those groups can be attributed to their contact rates’ dependency (or lack 
thereof) on population density, population density does seem to have a noticeable effect on the 
dynamics of disease spread, and accounts for the difference in the disease dynamics for the 
different groups in either city.  

Groups that are dependent on population density are more affected by the disease when 
population density is high, but when population density is low, groups that are independent of 
population density are more affected. This is just another supporting factor for the large role that 
population density seems to play in epidemiological models that are constructed to be dependent 
on population density. 

The value of the basic reproductive number (R0) is very dependent on both p and N as evidenced 
by Fig. 3, though, the stability of the disease free equilibrium seems that it would be more 
dependent on the value of N first-and-foremost. 

Future Directions 

Future efforts to progress this model involve calculation of the endemic equilibrium and full 
stability analysis for all equilibria discussed. Also, more revisions and adjustments can be made 
to parameter values as more data becomes available for MERS to make our model more accurate 
and useful.  

More detailed analysis of R0 can help us better understand the effect of population density on the 
spread of disease. The variables that are most likely to vary in different settings–whether urban, 
suburban, or rural–is the population density (N) and the proportion of people in each group (p), 
and this idea could be explored more.  

To give our model a broader scope, we can modify this model to predict patterns of interest for a 
wider demographic and possibly create a more global view of the spread of this disease instead 
of a localized study. In addition, we can note the effects of population density on other diseases 
instead of just MERS.  
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Going the other direction, we can also narrow our scope and take into account special event 
circumstances by seeing the effects of temporary but significant events like mass gathering 
proceedings such as the Hajj pilgrimage. 
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