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Abstract

Recently, a bisection-Newton (BN) iteration [Zhang and Yang, Math. Comp.,
83:1701–1726 (2013)] was proposed for solving the second order cone linear comple-
mentarity problem (SOCLCP) and was shown to be very efficient for small-to-medium
size problems. However, for large scale problems, difficulty arises in the BN iteration
in two aspects: 1) a specific eigenpair needs to be computed accurately, and 2) there
are many large scale linear systems each with different coefficient matrices to solve. In
this paper, we present an efficient method based on Krylov subspace approximation.
Although there are still many large scale linear systems arise in the new method, most
of them share the same coefficient matrices, a fact we will fully exploit to significantly
cut down the number of, often the most expensive part in the computation, LU de-
compositions needed in solving the linear systems. Here, we first show that SOCLCP
can be solved by finding a positive zero s∗ ∈ R of a particular rational function h(s),
and then propose a Krylov subspace method to reduce h(s) to hℓ(s) as in the model
reduction. The zero s∗ of h(s) can be accurately approximated by that of hℓ(s) = 0
which itself can be casted as a small eigenvalue problem. The new method is made
possible by our complete description of the curve h(s), and it does not need the eigen-
information of a large matrix previously required in the BN iteration and is suitable
for large scale problems. The new method is tested and compared against the BN
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iteration and two other state-of-the-art packages: SDPT3 and SeDuMi. Our numer-
ical results show that the method is very efficient both for small-to-medium dense
problems as well as for large scale problems.

Key words. Second-order cone, linear complementarity problem, SOCLCP, globally uniquely
solvable property, GUS, Krylov subspace, Model reduction, Linear complementarity problem via
Arnoldi process (LCPvA)
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1 Introduction

For a given matrix-vector pair (M,qqq) ∈ Rn×n×Rn, in this paper, we will consider compu-
tational methods for the second-order cone linear complementarity problem (SOCLCP):

xxx ∈ Kn, qqq +Mxxx ∈ Kn, xxx⊤(qqq +Mxxx) = 0, (1.1)

where Kn is the second-order cone (SOC), also known as the Lorentz cone or the ice-cream
cone, defined by

Kn :=
{
[x1,xxx

⊤
2 ]

⊤ ∈ R× Rn−1 : ∥xxx2∥2 ≤ x1

}
.

To simplify our presentation, we will denote (1.1) by SOCLCP(M,Kn, qqq) whose set of
solutions will be denoted by SOL(M,Kn, qqq).

The SOLCLP (1.1) is a special case of the linear complementarity problem over a
Cartesian product of multiple second-order cones K×m := Kn1 ×Kn2 × · · · ×Knm :

xxx ∈ K×m, qqq +Mxxx ∈ K×m, xxx⊤(qqq +Mxxx) = 0. (1.2)

We refer to, e.g., [1, 6, 8, 13, 17, 18, 20, 25, 33] for various applications as well as for
the theoretical and numerical studies. As it is a more general problem, many theoretical
properties that we will discuss, develop, and exploit for SOLCLP (1.1) are no longer
admitted by (1.2). These properties are crucial for us to design our efficient algorithms for
(1.1), however. It is hoped that our development here for (1.1) will help us to efficiently
deal with this more general (1.2) in the future.

Both SOCLCPs (1.1) and (1.2) are similar to the classical linear complementarity
problem over the cone Rn

+ = {xxx = [xi] ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}:

xxx ∈ Rn
+, qqq +Mxxx ∈ Rn

+, xxx⊤(qqq +Mxxx) = 0,

which arises from many areas and has a wealth of development, in both theory and im-
plementation (see e.g., [4, 7, 10, 21, 23, 29]).

An efficient approach for SOCLCP (1.1) is not only of value in its own right, but
also may shed lights on solving the more general linear complementarity problem (1.2).
A prime example is the matrix splitting method [44] for (1.2), whose efficiency largely
comes from the efficiency of the bisection-Newton (BN) iteration [43] for (1.1). The BN
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iteration is a recent development based on the basic algebraic-geometric properties for
SOCLCP (1.1) with M having the so-called globally uniquely solvable property1 (GUS)
[16, 17, 18, 42] (see Definition 2.1 below); BN was employed and imbedded successfully
into the matrix-splitting framework in [44] to solve the linear complementary problem
(1.2).

The BN iteration solves SOCLCP(M,Kn, qqq) from an entirely different perspective from
other methods in the literature (e.g., [5, 6, 8, 13, 20, 22, 24, 32, 37, 39, 40, 41]), and it is
quite efficient for small-to-medium scale problems [43]. However, for large scale problems,
there are two bottlenecks: it needs to solve the unique positive eigenvalue of M⊤Jn and
the associated eigenvector accurately, and repeatedly it has to solve many linear systems
with coefficient matrices M − sJn, where s is some varying shift and

Jn := diag(1,−1, · · · ,−1) ∈ Rn×n. (1.3)

In this paper, we will propose an efficient algorithm for SOCLCP (1.1). Our numerical
tests show that it is competitive to the BN iteration for small-to-medium scale problems,
but more importantly it is suitable for large scale problems.

First, we will show that SOCLCP (1.1) with M having the GUS property can be
solved by finding a particular positive zero s∗ of a rational function h(s). We will show
that this function h(s) enjoys many nice geometry properties on s ∈ (0,+∞) and indeed
it can only admit one or two zeros on (0,+∞). Based on the rich techniques in the
model reduction, we then propose a Krylov subspace method to approximate h(s) by a
Padé-type approximation hℓ(s). With the aid of the geometry properties of h(s), the
positive zero s∗ of h(s) can be efficiently computed by solving hℓ(s) = 0 through a small
eigenvalue problem. Our new method does not rely upon the eigen-information of M⊤Jn
and is suitable for large scale problems. We tested our method and compared with the
BN iteration and two available MATLAB software packages: SDPT3 [39, 40, 41] and
SeDuMi [37], for small-to-medium dense problems as well as for large scale sparse problems.
Preliminary numerical experiments show that our method is rather efficient in either case
in terms of accuracy and speed.

The rest of this article is organized as follows. In section 2, we present some basic
results for SOCLCP(M,Kn, qqq), primarily with the GUS property, and then give a brief
description of the BN iteration [43] in section 3. We take a new look at SOCLCP(M,Kn, qqq)
from the view point of finding the positive zero s∗ of h(s) in section 4, which is followed by
a detailed theoretical analysis of its geometry property in section 5. Section 6 is dedicated
to the discussion for finding the zero s∗ > 0 of h(s): the Padé-type approximation hℓ(s) of
h(s) via Krylov subspace techniques is first introduced, and then the strategy of obtaining
an approximation of s∗ is presented. Our numerical tests and comparison with the BN
iteration, SDPT3 and SeDuMi are reported in section 7. Final concluding remarks are
drawn in section 8.

Notation: Throughout this paper, all vectors are column vectors and are typeset in bold
lower case letters. For A ∈ Rn×m (the set of all m × n real matrices), A⊤ denotes its
transpose, and R(A) and N(A) represent the range and kernel of A, respectively. Thus

1A complete algebraic-geometric characterization of this property will be detailed in Theorem 2.2.
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R(A)⊥ = N(A⊤), where R(A)⊥ denotes the orthogonal complement of R(A). As usual, the
identity matrix in Rn×n will be denoted by In ≡ [eee1, eee2, . . . , eeen], where eeei is its i column.
We shall also adopt MATLAB-like convention to access the entries of vectors and matrices.
For example, xxx(i) is the the ith element of xxx and A(i,j) is the (i, j)th entry of A, where
(i : j) stands for the set of integers from i to j inclusive, and A(k:ℓ,i:j) is the submatrix of A
that consists of intersections from row k to row ℓ and column i to column j. For a matrix
already with a subscript, e.g. Yr, we write Yr;(k:ℓ,i:j) for (Yr)(k:ℓ,i:j). Notation ∥·∥2 is either
the matrix spectral norm or the Euclidean vector norm, depending on its arguments:

∥xxx∥2 =
√∑

i

|xxx(i)|2, ∥A∥2 := max
xxx ̸=0

∥Axxx∥2
∥xxx∥2

.

The ℓth Krylov subspace generated by A ∈ Rn×n on xxx ∈ Rn is defined as

Kℓ(A,xxx) = span(xxx,Axxx, . . . , Aℓ−1xxx).

2 Basic Properties of SOCLCP

In this section, we review several basic results for SOCLCP(M,Kn, qqq). These results form
the theoretical basis of our development later. For the ease of presentation, we define

Ms := M − sJn, Ks := MsKn = {Msxxx : xxx ∈ Kn}. (2.1)

Evidently, K0 = MKn. Since Ks approaches −Kn as s → +∞ ([42, Lemma 9]), we define

K∞ := −Kn.

Finally, ∂(Kn) and int(Kn) stand for the boundary and the interior of Kn, respectively.

Lemma 2.1 ([42]). The following statements hold:

(i) For nonzero vectors xxx,yyy ∈ Kn, xxx⊤yyy = 0 if and only if xxx ∈ ∂(Kn), yyy ∈ ∂(Kn) and
yyy = sJnxxx for some s > 0.

(ii) Let xxx ∈ Kn. Then xxx⊤yyy > 0 for all nonzero vector yyy ∈ Kn if and only if xxx ∈ int(Kn).

The next theorem characterizes the three mutually exclusive cases for SOCLCP(M,Kn, qqq).
We point out that if M is nonsingular, (C2) can be equivalently restated as −M−1qqq ∈ Kn

(which implies that xxx = −M−1qqq is the solution). In (C3), M − s∗Jn may or may not be
singular.

Theorem 2.1 ([43, 44]). There are three mutually exclusive cases for the solution xxx ∈
SOL(M,Kn, qqq), namely:

(C1) qqq ∈ Kn (which implies that xxx = 0 is the solution);

(C2) SOL(M,Kn, qqq) ⊇ {xxx ∈ Kn : Mxxx+ qqq = 0} ̸= ∅;
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(C3) there exists s∗ > 0 such that Mxxx+ qqq = s∗Jnxxx ∈ ∂(Kn).

Next we introduce the so-called GUS property on M , previously discussed in [16, 17,
18, 42].

Definition 2.1. M ∈ Rn×n is said to have the globally uniquely solvable (GUS) property
if the solution xxx of SOCLCP(M,Kn, qqq) is unique for any given qqq ∈ Rn.

The next theorem provides an algebraic-geometric characterization of such a property.
The reader is referred to [42, 43, 44] for proofs and more.

Theorem 2.2. M ∈ Rn×n has the GUS property if and only if the following three state-
ments hold2.

(i) MJn has exactly one positive eigenvalue τ in [0,+∞). Moreover,

rank(MJn − τIn) = rank(MτJn) = n− 1 (2.2)

and MJn has an eigenvector www ∈ int(Kn) associated with τ ;

(ii) M⊤Jn has an eigenvector vvv ∈ int(Kn) associated with τ , and R(Mτ ) = (Jnvvv)
⊥;

(iii) for all aaa ∈ ∂(Kn), aaa⊤Maaa ≥ 0 and aaa⊤M−1aaa ≥ 0.

When M has the GUS property, the following statements hold

(a) For 0 < s < τ < t, K0\{0} ⊂ int(Ks), and K∞\{0} ⊂ int(Kt). Moreover, Ks and
Kt lie in the two opposite sides of R(Mτ ) which is a hyperplane in Rn.

(b) Kt\{0} ⊂ int(Ks) for 0 < t < s < τ and for τ < s < t.

(c) If xxx ∈ SOL(M,Kn, qqq) is not in the cases (C1) and (C2), i.e., qqq ̸∈ (−MKn) ∪ Kn,
then there exists a unique s∗ > 0 such that Mxxx+ qqq = s∗Jnxxx and

s∗


= τ, if (−qqq)⊤Jnvvv = 0 or equivalently, qqq ∈ R(Mτ ),

< τ, if (−qqq)⊤Jnvvv > 0,

> τ, if (−qqq)⊤Jnvvv < 0.

We remark that Theorem 2.2(i) doesn’t say anything about the algebraic multiplicity
of τ , i.e, it doesn’t exclude the case that τ is a multiple eigenvalue algebraically. However,
if τ indeed is an algebraically multiple eigenvalue, the corresponding eigenvector of MJn
is unique, modulo a nonzero scalar factor, because of (2.2).

Theorem 2.2(i) implies that 0 cannot be an eigenvalue of MJn and thus M must be
nonsingular if M has the GUS property. the GUS property or not. But an immediate
consequence of this theorem is that a symmetric positive definite M has the GUS property.
In fact, more can be said: 1)M such thatM+M⊤ is positive definite has the GUS property

2We note that MJn has the same eigenvalues as (MJn)
⊤ = JnM

⊤ which has the same eigenvalues as
J−1
n (JnM

⊤)Jn = M⊤Jn.

5



[18, Theorem 17], and 2) a symmetric M has the GUS property if and only if it is positive
definite (implied by [18, Theorem 21]).

In the case when M is symmetric positive definite, M − λJn is the so-called positive
definite pencil [28, Definition 1.1] since M − 0 · Jn = M is positive definite. It follows
from a more general result there that M − λJn is diagonalizable and has one simple
positive eigenvalue and n − 1 negative eigenvalues [28, Lemma 3.8]. So in this case, τ in
Theorem 2.2(i) is a simple eigenvalue.

By Theorem 2.1, we know that if xxx ∈ SOL(M,Kn, qqq) is not in the cases (C1) and (C2),
then it must be in the case (C3), i.e., there exists s∗ > 0 such that Mxxx+qqq = s∗Jnxxx. If also
M has the GUS property, then xxx is unique and thus, s∗ is unique, too. By Theorem 2.2(c),
we can locate s∗ with the information of the eigenpair (τ,vvv) of M⊤Jn. This is exactly
what the BN iteration was designed to do [43].

Throughout the rest of this paper, our target is the second-order cone linear com-
plementarity problem SOCLCP(M,Kn, qqq) with M having the GUS property, and the
assignments to τ , s∗, qqq, vvv, www in Theorem 2.2 will all be kept.

3 The BN iteration

The BN iterative method [43] is based on Theorem 2.1, where the cases (C1) and (C2) are
rather trivial. It is the case (C3) that is conceivably more common and needs most work.
The BN iteration combines bisection and the Newton method to generate a sequence {sk}
that converges to s∗ by investigating whether

xxx(sk) := −(M − skJn)
−1qqq

is in Kn or not. We refer to [43, Algorithm 3] and [44, Algorithm 2] for more detail.
The iteration needs to know the eigenpair (τ,vvv) of M⊤Jn associated with the unique

positive eigenvalue τ of M⊤Jn. Therefore, the main computational burden is to find the
eigenpair (τ,vvv) and to compute xxx(sk) in each step. The latter has a cost of O(n3) flops
in general, but can be much less for certain special structured M . For example, when M
is in the upper Hessenberg form, it costs only O(n2) to compute xxx(sk). In general we can
always reduce M to an upper Hessenberg matrix through an orthogonal transformation
(more detail in subsection 6.5). This reduction of M to an upper Hessenberg matrix itself
still costs O(n3) flops, but it needs to be done only once.

The BN iteration with a pre-processing: transforming M to Q⊤MQ is rather efficient
for small-to-medium scale problems. However, for large scale problems, such a trans-
formation is too costly because it costs O(n3) flops. Thus there are two computational
bottlenecks in this approach, namely,

1. the need of the eigenpair (τ,vvv) of M⊤Jn, and

2. the transformation of M to Q⊤MQ which in general cannot exploit, e.g., much of
the sparsity structure of M for a large scale SOCLCP(M,Kn, qqq).

In this paper, we will attempt to circumvent both computational bottlenecks by de-
veloping numerical methods that are efficient for large scale SOCLCP(M,Kn, qqq) for which
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either M is sparse or the matrix-vector product with M is fast (at a cost much less than
O(n2) flops that is needed usually for a dense M). Our new method still focuses on the
case (C3).

4 Transform SOCLCP into a zero-finding problem

Our new method relies on the following simple observation.

Theorem 4.1. Suppose s ∈ R is not an eigenvalue of MJn. Let

xxx(s) ≡
[
x1(s)
xxx2(s)

]
:= −(M − sJn)

−1qqq, (4.1)

where Jn is given by (1.3). Then xxx(s) ∈ ∂(Kn) if and only if x1(s) > 0 and h(s) = 0,
where

h(s) := xxx(s)⊤Jnxxx(s) = qqq⊤(M − sJn)
−⊤Jn(M − sJn)

−1qqq. (4.2)

Proof. It is evident by the definition of Kn.

According to Theorem 4.1, we know that finding s∗ for the case (C3) in Theorem 2.1
is equivalent to finding the zero s∗ of h(s). Notice that

h(s) = qqq⊤[s2Jn − (M +M⊤)s+MJnM
⊤]−1qqq (4.3)

is a rational function that involves the inverse of an n×n quadratic matrix-valued function.
Such a function has the same form as the so-called second-order transfer functions that
are sought to be reduced in, e.g., [2, 3, 9, 12, 26, 36, 38], by the name of the second-order
model reduction. The basic idea, in the context of h(s) here, is to approximate h(s) by a
Padé-type approximation hℓ(s) having the same form but involving the inverse of a much
smaller, say ℓ× ℓ, quadratic matrix-valued function. Usually ℓ ≪ n, say ℓ = 10 up to 50
for example. Some of the poles (i.e., values of s at which hℓ(s) becomes ∞) and zeros
of hℓ(s) are often good approximations to some of those of h(s), respectively. Note from
(4.1) and (4.2) that generically, the unique positive eigenvalue τ of MJn (which is also
the one of M⊤Jn) is a pole of h(s), and thus conceivably one of the poles of hℓ(s) should
provide a good approximation of τ (see the details in sections 5 and 6 below).

Thanks to powerful techniques developed in the model reduction, the (rational) Krylov
subspace techniques can be employed to construct hℓ(s) at price of only solving certain
linear systems involving M . This makes it possible for us to numerically solve large scale
SOCLCP(M,Kn, qqq) because the involved linear systems can be solved iteratively through
exploiting the sparsity of M or fast matrix-vector multiplications by M . Furthermore, this
approach does not require the eigenpair (τ,vvv) of M⊤Jn, and it even can produce accurate
approximations to τ by the poles of hℓ(s) (see Theorem 5.1 below). We shall discuss these
issues in detail in section 6.

In Theorem 2.2(c), the case s∗ ̸= τ is generic and should occur more frequently than
otherwise and thus the case should be considered more carefully. On the other hand,
Zhang and Yang [43] explained how to compute the solution xxx ∈ SOL(M,Kn, qqq) by a
direct method [43, Algorithm 2] for the special case s∗ = τ . Therefore we will not invest
much effort in the special case any further from now on.
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5 Analyze the curve of h(s)

In this section, we shall present a theoretical analysis of the curve of h(s) defined in (4.2).
By relying upon the special structure of SOCLCP(M,Kn, qqq), our analysis reveals some
basic geometry properties of h(s) both for the generic case s∗ ̸= τ and for the special case
s∗ = τ . These findings are helpful in guiding us to compute the wanted zero and pole of
h(s).

5.1 The general case s∗ ̸= τ

We first analyze the curve h(s) of (4.2) for the generic case: s∗ ̸= τ . According to
Theorem 2.2(c), s∗ ̸= τ if and only if vvv⊤Jnqqq ̸= 0 or, equivalently, qqq ̸∈ R(Mτ ).

As a convention, in what follows, we will use “h(s) = −” to mean h(s) < 0 and likewise
“h(s) = +” to mean h(s) > 0.

Lemma 5.1. Suppose that M has the GUS property and qqq ̸∈ (−MKn)∪Kn. We have the
following statements.

(a) If s∗ ∈ (0, τ), then

h(s) =


− for s ∈ (0, s∗),

0 for s = s∗,

+ for s ∈ (s∗, τ);

(b) If s∗ ∈ (τ,∞), then

h(s) =


+ for s ∈ (τ, s∗),

0 for s = s∗,

− for s ∈ (s∗,∞).

Proof. First, we know that under the conditions, the solution xxx(s∗) ∈ SOL(M,Kn, qqq) is
on the boundary ∂(Kn) of Kn, where xxx(s) is defined by (4.1).

Consider (a), where s ∈ (0, s∗). We claim that xxx(s) = −M−1
s qqq ̸∈ Kn ∪ (−Kn), which

immediately implies h(s) ≡ [x1(s)]
2 − ∥xxx2(s)∥22 < 0. Otherwise, if xxx(s) ∈ Kn, by Theo-

rem 2.2(b), we have
−qqq = Msxxx(s) ∈ Ks\{0} ⊂ int(Ks∗),

implying −qqq = Ms∗yyy for some yyy ∈ int(Kn). Thus xxx(s∗) = −M−1
s∗ qqq = yyy ∈ int(Kn),

contradicting xxx(s∗) ∈ ∂(Kn). Similarly,

xxx(s) ∈ −Kn ⇒ qqq = Ms(−xxx(s)) ∈ Ks\{0} ⊂ int(Ks∗) ⇒ −xxx(s∗) ∈ int(Kn),

contradicting again xxx(s∗) ∈ ∂(Kn). Now, for s∗ < s < τ , from Theorem 2.2(b), we have

−qqq = Ms∗xxx(s∗) ∈ Ks∗\{0} ⊂ int(Ks) ⇒ xxx(s) ∈ int(Ks) ⇒ h(s) > 0.

The case (b) can be proved similarly. For s > s∗, we claim that xxx(s) = −M−1
s qqq ̸∈

Kn ∪ (−Kn), which directly implies h(s) < 0. Otherwise, by Theorem 2.2(b), we have

xxx(s) ∈ Kn ⇒ −qqq = Msxxx(s) ∈ Ks\{0} ⊂ int(Ks∗) ⇒ xxx(s∗) ∈ int(Kn),
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contradicting xxx(s∗) ∈ ∂(Kn). Similarly,

xxx(s) ∈ −Kn ⇒ qqq = Ms(−xxx(s)) ∈ Ks\{0} ⊂ int(Ks∗) ⇒ −xxx(s∗) ∈ int(Kn),

contradicting again xxx(s∗) ∈ ∂(Kn). Now, for τ < s < s∗, from Theorem 2.2(b), we have

−qqq = Ms∗xxx(s∗) ∈ Ks∗\{0} ⊂ int(Ks) ⇒ xxx(s) ∈ int(Ks) ⇒ h(s) > 0.

The proof is completed.

We now present our main theorem in this subsection. It gives a completed picture
of h(s) on (0,∞) as detailed in Table 5.1 for the current case. In particular, it shows
that h(s) have at least one but at most two positive zeros in (0,∞). For cases 3 and 4
in the table, qqq ̸∈ R(Mτ ) is redundantly added for clarity since it is in fact implied by
qqq ∈ (−Kn)\(−MKn) for case 3 and by qqq ∈ MKn\Kn for case 4.

Table 5.1: The sign of h(s) on (0,∞) in terms of location of qqq

cases where is qqq? solution x∗ or h(s)

1 qqq ∈ Kn 0 = xxx∗ ∈ SOL(M,Kn, qqq)

2 qqq ∈ −MKn −M−1qqq = xxx∗ ∈ SOL(M,Kn, qqq)

3
qqq ∈ (−Kn)\(−MKn),

qqq ̸∈ R(Mτ )
h(s) =


− for s ∈ (0, s∗),

0 for s = s∗,

+ for s ∈ (s∗, τ),

+ for s ∈ (τ,∞).

4
qqq ∈ MKn\Kn,

qqq ̸∈ R(Mτ )
h(s) =


+ for s ∈ (0, τ),

+ for s ∈ (τ, s∗),

0 for s = s∗,

− for s ∈ (s∗,∞).

5
qqq ̸∈ (−MKn) ∪MKn ∪ Kn ∪ (−Kn),

qqq ̸∈ R(Mτ )
h(s) =



− for s ∈ (0, s∗;1),

0 for s = s∗;1,

+ for s ∈ (s∗;1, τ),

+ for s ∈ (τ, s∗;2),

0 for s = s∗;2,

− for s ∈ (s∗;2,∞).

Theorem 5.1. Suppose M has the GUS property. If qqq ̸∈ R(Mτ ) (and thus s∗ ̸= τ), then

(1) the sign of h(s) for s ∈ (0,+∞) can be characterized by cases 3, 4, and 5 in Table 5.1.
In cases 3 and 4, h(s) has one positive root s∗, and in case 5, it has two positive
roots s∗;1 and s∗;2 one of which is s∗, and

(2) lim
s→τ

h(s) = +∞, which combining with Table 5.1, implies that τ is the unique pole of

h(s) in [0,+∞).
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Proof. (1) We first remark that the five cases of qqq presented in Table 5.1 are mutually
exclusive and also complete for qqq ∈ Rn\R(Mτ ). The first two cases are (C1) and (C2) in
Theorem 2.1.

We consider case 3. Note that qqq ∈ (−Kn)\(−MKn) implies qqq⊤Jnvvv < 0 and by The-
orem 2.2(c), we know that 0 < s∗ < τ . Thus, using Lemma 5.1, we only need to show
h(s) > 0 for s > τ , which is true because −Kn\{0} ⊆ int(Ks) by Theorem 2.2(a), and
thus

qqq ∈ (−Kn)\(−MKn) ⊆ int(Ks) ⇒ −xxx(s) ∈ int(Kn) ⇒ h(s) > 0.

For case 4, we note that for s ∈ (0, τ), it follows from Theorem 2.2(a,b) that

qqq ∈ MKn\Kn = K0\Kn ⊂ int(Ks) ⇒ −xxx(s) ∈ int(Kn) ⇒ h(s) > 0,

which also implies that s∗ > τ . Therefore, combining it with Lemma 5.1, yields the
conclusion.

For the last case, note that qqq ̸∈ (−MKn) ∪MKn ∪Kn ∪ (−Kn) ∪ R(Mτ ) implies both
qqq ̸∈ (−MKn) ∪Kn and −qqq ̸∈ (−MKn) ∪Kn. We now prove the result for vvv⊤Jnqqq < 0 and
vvv⊤Jnqqq > 0.

a) vvv⊤Jnqqq < 0. By Theorem 2.2(c), we know 0 < s∗ < τ . So s∗;1 = s∗. On the other
hand, consider the problem SOCLCP(M,Kn,−qqq). Since −qqq ̸∈ (−MKn) ∪ Kn, we
know also from Theorem 2.2(c) that there is another s∗;2 > 0 such that

−(M − s∗;2Jn)
−1(−qqq) = −xxx(s∗;2) ∈ SOL(M,Kn,−qqq).

Moreover, because vvv⊤Jn(−qqq) > 0, by applying Theorem 2.2(c) to the problem
SOCLCP(M,Kn,−qqq), we conclude that s∗;2 > τ . Consequently, based on Lemma 5.1,
the assertion follows.

b) vvv⊤Jnqqq > 0. The proof for this situation is similar to the first situation a), except
that s∗ now is s∗;2. The details are omitted.

(2) Pre-multiplying (M − sJn)xxx(s) = −qqq by vvv⊤Jn on both sides and using (Jnvvv)
⊤M =

τvvv⊤, we know that for any 0 < s ̸= τ ,

(τ − s)vvv⊤xxx(s) = −vvv⊤Jnqqq ̸= 0 (5.1)

and hence,
lim
s→τ

|vvv⊤xxx(s)| = +∞ and lim
s→τ

∥xxx(s)∥2 = +∞.

Let zzz be any accumulation point of xxx(s)
∥xxx(s)∥2 as s → τ , i.e., there exists a sequence s1, s2, . . .

such that si → τ and xxx(si)
∥xxx(si)∥2 → zzz as i → +∞. Dividing (M − sJn)xxx(s) = −qqq by ∥xxx(s)∥2,

we have for 0 < s ̸= τ

(MJn − sIn)Jn
xxx(s)

∥xxx(s)∥2
= − qqq

∥xxx(s)∥2
. (5.2)
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Putting s = si in (5.2) and letting i → +∞, we have (MJn − τIn)Jnzzz = 0. Since
∥Jnzzz∥2 = 1, by Theorem 2.2(i),

either Jnzzz =
www

∥www∥2
or Jnzzz = − www

∥www∥2
.

In other words, the only possible accumulation points of xxx(s)
∥xxx(s)∥2 are zzz = ±Jn

www
∥www∥2 . This fact

together with lims→τ ∥xxx(s)∥2 = +∞ are sufficient for us to conclude lims→τ h(s) = +∞.
In fact, if the opposite were true, then there would be a sequence s1, s2, . . . converg-
ing to τ such that {h(si)} is bounded. We can assume without loss of generality that
limi→+∞ h(si) = φ < +∞. Note that we can choose a subsequence si1 , si2 , . . . such that

lim
j→+∞

xxx(sij )

∥xxx(sij )∥2
= Jn

www

∥www∥2
or lim

j→+∞

xxx(sij )

∥xxx(sij )∥2
= −Jn

www

∥www∥2
.

But in either case,

φ = lim
j→+∞

h(sij ) = lim
j→+∞

xxx(sij )
⊤Jnxxx(sij )

∥xxx(sij )∥22
∥xxx(sij )∥22 =

www⊤Jnwww

∥www∥22
lim

j→+∞
∥xxx(sij )∥22 = +∞,

a contradiction, where we have used the fact that www ∈ int(Kn) and thus www⊤Jnwww > 0. This
completes the proof.

-
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6
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case 5
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Figure 5.1: h(s) corresponding to cases 3, 4, and 5 in Table 5.1.

Remark 5.1. Except for the trivial cases: cases 1 and 2, Theorem 5.1 reveals a complete
picture of h(s), which is illustrated in Figure 5.1. We point out that the three patterns of
h(s) in Figure 5.1 are one-to-one corresponding to the three locations of qqq. These one-to-
one correspondences are important for correctly finding the right approximation of s∗ via
the reduced hℓ(s) (see section 6.1). Before reducing h(s) to hℓ(s), we will first check if it
is in case 1 or case 2. If neither case occurs, then it must fall into one of the cases 3, 4,
and 5. Now the location of qqq and, thereby, the sign pattern of h(s) or, equivalently, the
relationship between τ and s∗, are then clear.
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5.2 The special case s∗ = τ

We now analyze the curve h(s) for the special case s∗ = τ . The next proposition implies
that h(s) < 0 for all 0 < s ̸= τ .

Theorem 5.2. Suppose M has the GUS property and qqq ∈ R(Mτ ). Then h(s) < 0 for all
0 < s ̸= τ .

Proof. We show that xxx(s) ̸∈ Kn∪ (−Kn) and therefore h(s) < 0 for 0 < s ̸= τ . Suppose on
the contrary that xxx(s) ∈ Kn ∪ (−Kn). Then either xxx(s) ∈ Kn ⇒ qqq ∈ Ks which contradicts
qqq ∈ R(Mτ ) because Ks ∩ R(Mτ ) = ∅, or xxx(s) ∈ −Kn ⇒ qqq ∈ −Ks which contradicts
qqq ∈ R(Mτ ) because (−Ks) ∩ R(Mτ ) = ∅. This establishes our assertion.

Recall our discussion immediately after Theorem 2.2 that we cannot exclude the pos-
sibility that algebraically τ is a multiple eigenvalue of M⊤Jn. But if τ is indeed a simple
eigenvalue of M⊤Jn, the following theorem says that τ is no longer a pole of h(s), i.e., it
is a removable singularity. In such a case, by Theorem 5.2, we know lims→τ h(s) ≤ 0 with
a possibilty of being an equality.

Theorem 5.3. Suppose M has the GUS property. If qqq ∈ R(Mτ ) (and thus s∗ = τ) and if
τ is a simple eigenvalue of M⊤Jn, then h(s) is analytic in (0,+∞). In particular, if M
is symmetric positive definite, then h(s) is analytic in (0,+∞).

Proof. It suffices to prove h(s) is analytic at s = τ . To this end, we first note from
Theorem 2.2 that when M has the GUS property, we have

M⊤Jnvvv = τvvv ⇒ vvv⊤JnM = τvvv⊤.

Therefore, if τ is a simple eigenvalue of M⊤Jn, by the Jordan canonical decomposition of
a matrix, there exists a nonsingular matrix X ∈ Rn×n such that

X JnM =

[
τ 0
0 B

]
X with X(1,:) = vvv⊤,

i.e., the first row of X is vvv⊤. Thus,

xxx(s) = −(M − sJn)
−1qqq

= −(JnM − sIn)
−1Jnqqq

= −X−1

[
1

τ−s 0

0 (B − sIn−1)
−1

]
XJnqqq

= −X−1

[
1

τ−s 0

0 (B − sIn−1)
−1

] [
0
zzz2

]
= −X−1

[
0

(B − sIn−1)
−1zzz2

]
,
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where we have used XJnqqq =

[
vvv⊤Jnqqq

X(2:n,:)Jnqqq

]
and vvv⊤Jnqqq = 0 by Theorem 2.2(c), and set

zzz2 := X(2:n,:)Jnqqq. Therefore,

h(s) = xxx(s)⊤Jnxxx(s)

=
[
0, zzz⊤2 (B − sIn−1)

−⊤
]
X−⊤JnX

−1

[
0

(B − sIn−1)
−1zzz2

]
= zzz⊤2 (B − sIn−1)

−⊤C(B − sIn−1)
−1zzz2, (5.3)

where C = (X−⊤JnX
−1)(2:n,2:n) ∈ R(n−1)×(n−1). Since every eigenvalue of B is also an

eigenvalue of M⊤Jn and τ is assumed a simple eigenvalue of M⊤Jn, we conclude that τ
cannot be an eigenvalue of B, i.e., B − τIn−1 is nonsingular, and thus τ is not a pole of
h(s).

Remark 5.2. Theorem 5.3 reveals the similarity between SOCLCP(M,Kn, qqq) and the
trust-region subproblem [31, Chapter 4]:

min
xxx⊤xxx=δ>0

f(xxx) with f(xxx) :=
1

2
xxx⊤Mxxx+ qqq⊤xxx. (5.4)

Indeed, when M is symmetric, SOCLCP(M,Kn, qqq) in (1.1) is just the KKT condition of
the following quadratic second-order cone programming

min
xxx⊤Jnxxx=0, x1>0

f(xxx) with f(xxx) :=
1

2
xxx⊤Mxxx+ qqq⊤xxx, (5.5)

and s in h(s) is the Lagrangian multiplier. By comparing (5.4) to (5.5), we note both have
the same objective function but different constraints. Moreover, for (5.4), a real-valued
rational function ∥p(λ)∥2 of the Lagrangian multiplier λ , as the counterpart of h(s) here,
can also be defined [31, (4.37)]. It is well-know that in the general case, −λmin(M) (the
negative of the smallest eigenvalue of M) is a pole of ∥p(λ)∥2, but, like the special case
s = s∗ in SOCLCP(M,Kn, qqq), the Lagrangian multiplier associated with the optimal
solution is λ∗ = −λmin(M) and λ∗ is not a pole in the “hard case”.

Remark 5.3. Theorems 5.1, 5.2 and 5.3 are important because they together provide
us with ways to detect the special case qqq ∈ R(Mτ ). In particular, Theorems 5.1 and 5.2
simply suggest that qqq ∈ R(Mτ ) if h(s) < 0 for 0 < s ̸= τ ; so one practical strategy is to
check if h(s) > 0 for s near τ (see Figure 5.1).

6 Compute the positive zero s∗ of h(s)

6.1 Reduce h(s) via the Arnoldi process

There are several approaches (see e.g., [2, 36, 38]) to reduce the “transfer function” h(s)
in (4.2) which can be related to a time-invariant dynamical system. In particular in the
second-order form as in (4.3), there are two existing treatments:
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1. linearizing h(s) and reducing it via the bi-orthogonal Lanczos process by Gallivan,
Grimme, and Van Dooren [14] and by Feldman and Freund [12], and

2. reducing h(s) via SOAR (Second-Order Arnoldi) by Bai and Su [2, 3].

Note our “transfer function” h(s) bears the factor form (4.2), but the reduced hℓ(s) by
either treatment above does not preserve the factor form. In addition, serious breakdowns
may occur.

We opt to design a special reduction procedure, similar to [27], which respects the
factor form in (4.2) and uses only the classical Arnoldi process. We will also show that
our reduced hℓ(s) corresponds to another SOCLCP in the form of (1.1) of much smaller
scale. Moreover, the Taylor series of hℓ(s) agrees with that of h(s) in their first ℓ terms at
the expansion point s0. More detailed discussions on the advantages of our factor-form-
preserving reduction can be found in Remarks 6.1 and 6.2 below.

Before we present our reduction procedure, we first discuss a commonly used shifting
technique. Suppose3 0 < s0 ∈ R is an arbitrary but otherwise fixed expansion point. Let

As0 = M−1
s0 Jn, bbbs0 = −M−1

s0 qqq, (6.1)

where Ms0 is defined by (2.1). Write s = s0 + σ. We have4

xxx(s) = −(M − sJn)
−1qqq

= −(Ms0 − σJn)
−1qqq

= −(In − σM−1
s0 Jn)

−1(M−1
s0 qqq)

= (In − σAs0)
−1bbbs0 ,

h(s) = xxx(s)⊤Jnxxx(s)

= bbb⊤s0(In − σAs0)
−⊤Jn(In − σAs0)

−1bbbs0

=: g(σ).

Suppose s0 is neither a pole nor a zero of h(s) (in other words, h(s0) ̸= 0 and is finite).
This implies h(s0) = bbb⊤s0Jnbbbs0 ̸= 0. Our reduction process begins with the Arnoldi process
as in Algorithm 6.1 to generate the Krylov subspace Kℓ(As0 , bbbs0).

It can be seen that if the process does not break down at line 8 till j = ℓ, then we have
in exact arithmetic

As0Yℓ = YℓHℓ +H(ℓ+1,ℓ) yyyℓ+1eee
⊤
ℓ and Y ⊤

ℓ As0Yℓ = Hℓ, (6.2)

where Yℓ = [yyy1, . . . , yyyℓ], Hℓ := H(1:ℓ,1:ℓ) ∈ Rℓ×ℓ is an upper Hessenberg matrix. Now, our
reduced hℓ(s) is given by

hℓ(s) = ∥bbbs0∥22eee⊤1 (Iℓ − σHℓ)
−⊤Y ⊤

ℓ JnYℓ(Iℓ − σHℓ)
−1eee1 =: gℓ(σ). (6.3)

3As far as the Arnoldi process in Algorithm 6.1 and the approximation property in Theorem 6.1 are
concerned, it is not necessary to have s0 ∈ R, not to mention s0 > 0. We are making this assumption here
mainly because only such an s0 interests us because it is intended to approximate s∗ in the end.

4Because of s = s0 + σ, a function in s is a function in σ, too, and vice versa. For this reason, we
conveniently write h(s), when regarded as a function in σ, as g(σ). Similarly for their reduced ones, we
have notations hℓ(s) and gℓ(σ).
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Algorithm 6.1 The Arnoldi Process

Given s0 which is neither a pole nor a zero of h(s), this procedure computes an orthonormal
basis matrix of Kℓ(As0 , bbbs0), where As0 and bbbs0 are defined by (6.1).

1: solve Ms0bbbs0 = −qqq for bbbs0 ;
2: yyy1 = bbbs0/∥bbbs0∥2; Y1 = [yyy1];
3: for j = 1, 2, . . . , ℓ do
4: solve Ms0www = Jnyyyj for www;
5: H(1:j,j) = Y ⊤

j www, www = www − YjH(1:j,j);
6: β = ∥www∥2;
7: if β = 0 then
8: BREAK;
9: else

10: H(j+1,j) = ∥www∥2, yyyj+1 = www/β, Yj+1 = [Yj , yyyj+1];
11: end if
12: end for
13: return Yℓ = [yyy1, . . . , yyyℓ], an orthonormal basis matrix of Kℓ(As0 , bbbs0), and H.

The following theorem implies that the Taylor series of hℓ(s) at s0 matches that of h(s) also
at s0 in their first ℓ terms. The proof follows similarly to that in [27], but for completeness,
we include it here.

Theorem 6.1. Suppose Algorithm 6.1 runs to its completion without breakdown to produce
Hℓ. Let h(s) be defined by (4.2) and hℓ(s) by (6.3). Then

h(s) = hℓ(s) +O(|s− s0|ℓ). (6.4)

Proof. The key for proving (6.4) is

Aj
s0yyy1 = YℓH

j
ℓeee1 for j ≤ ℓ− 1 (6.5)

which can be proved by induction as follows. First, for j = 1, by (6.2), we have As0yyy1 =
As0Yℓeee1 = YℓHℓeee1. Suppose (6.5) is true for j − 1 ≤ ℓ− 2. Then

Aj
s0yyy1 = AAj−1

s0 yyy1 = As0YℓH
j−1
ℓ eee1

= YℓHℓH
j−1
ℓ eee1 +H(ℓ+1,ℓ)yyyℓ+1eee

⊤
ℓ H

j−1
ℓ eee1

= YℓH
j
ℓeee1,

where we have used eee⊤ℓ H
j−1
ℓ eee1 = 0 because Hj−1

ℓ is a banded matrix with a lower band-
width j. Thus, for sufficiently tiny |σ|,

xxx(s) = (I − σAs0)
−1bbbs0 =

∞∑
i=1

σiAi
s0bbbs0

= ∥bbbs0∥2
∞∑
i=1

σiAi
s0yyy1
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= ∥bbbs0∥2
[ ℓ−1∑

i=1

σiYℓH
j
ℓeee1 +O(σℓ)

]
= ∥bbbs0∥2Yℓ

[ ℓ−1∑
i=1

σiHj
ℓeee1 +O(σℓ)

]
= ∥bbbs0∥2Yℓ

[
(Iℓ − σHℓ)

−1eee1 +O(σℓ)
]
.

Substituting the above relation into h(s) = xxx(s)⊤Jnxxx(s) yields (6.4).

Remark 6.1. By comparing our factor-form-preserving reduction procedure with the
two existing treatments, i.e., linearization+reduction via the bi-orthogonalization Lanczos
process or reduction via SOAR, the computational costs of ours is lower in order to obtain
the same order reduction. In particular, it can be seen that only one linear system of size
n is needed for each order of accuracy achieved in our factor-form-preserving reduction
procedure, while two linear systems of size n are needed in the other two treatments.
For the storage, since both our reduction procedure and SOAR are based on the Arnoldi
process, the storage requirements are almost the same. The linearization+reduction via
the bi-orthogonalization Lanczos process is based on the three-term recurrence, and the
storage is smaller. Serious breakdowns may occur in the two existing methods, and that
makes them less stable or more involved if the look-ahead strategy [35] is used as a cure.
On the contrary, a breakdown (i.e., β = 0 occurs at line 7) in the Arnoldi process in
Algorithm 6.1 is always welcome, because it then finds an invariant subspace and thus
makes h(s) ≡ hℓ(s).
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Figure 6.1: Example 6.1: h(s) vs. hℓ(s). Left: indistinguishable h(s) and h5(s); Right: error
h(s)− h5(s).

Example 6.1. As an illustration, we test this reduction on M ∈ R66×66 of bcsstk02
from the matrix market5. This M is symmetric positive definite. Although it is small

5http://math.nist.gov/MatrixMarket/.
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and dense, the resulting reduction behavior is rather representative. We choose qqq =
[1, . . . , 1]⊤ ∈ R66. Applying Algorithm 6.1 with s0 = ∥M∥1

10 ≈ 3.15 × 103 for ℓ steps, we
plot the original function h(s) and the reduced one hℓ(s). In Figure 6.1, h(s) vs. h5(s)
(left) and the difference h(s) − h5(s) (right) are plotted. Both curves in the left plot are
visually indistinguishable. The right plot shows that the error h(s)− h5(s) is in the order
of O(10−5), a remarkable accuracy of approximations with just ℓ = 5. 3

6.2 Approximations for poles and zeros

We have seen in Example 6.1 that the reduced hℓ(s) matches h(s) for a long range of
s as often it is in model order reduction (see e.g., [2, 12, 19, 36]). Therefore, we can
approximate s∗ by some zero of hℓ(s). Denoting Tℓ = (Y ⊤

ℓ JnYℓ)
−1 ∈ Rℓ×ℓ, we know that

hℓ(s) = gℓ(σ) = ∥bbbs0∥22eee⊤1
[
σ2HℓTℓH

⊤
ℓ − σ(TℓH

⊤
ℓ +HℓTℓ) + Tℓ

]−1
eee1. (6.6)

Let Kℓ = HℓTℓH
⊤
ℓ and Lℓ = TℓH

⊤
ℓ +HℓTℓ, and partition

Q(σ) := σ2Kℓ − σLℓ + Tℓ =

[ 1 ℓ−1

1 α aaa⊤

ℓ−1 aaa Q̂

]
.

It can be seen from the expression of hℓ(s) in (6.6) that hℓ(s) can be expressed as

hℓ(s) = gℓ(σ) =
∥bbbs0∥22

α− aaa⊤Q̂−1aaa

from which we know that the zeros of hℓ(s) correspond to some of the eigenvalues of the
quadratic eigenvalue problem (QEP):

Q̂(σ)ẑzz := (σ2K̂ℓ − σL̂ℓ + T̂ℓ)ẑzz = 0, (6.7)

where K̂ℓ = Kℓ;(2:ℓ,2:ℓ), L̂ℓ = Lℓ;(2:ℓ,2:ℓ), and T̂ℓ = Tℓ;(2:ℓ,2:ℓ). Depending on aaa, some
eigenvalues of this QEP may not be zeros of hℓ(s), but generically, the zeros of hℓ(s) and
the eigenvalues of QEP (6.7) are the same. Basing on Theorem 4.1 and Theorem 2.2, we
choose one eigenvalue µ satisfying the following three conditions:

s1 = Re(µ) + s0 > 0,
|Im (µ)| ≤ 10−6,
the first entry x1(s1) of xxx(s1) = −(M − s1Jn)

−1qqq is positive,
(6.8)

and use s1 = Re(µ)+s0 as the approximation of s∗, where Re (µ) and Im (µ) stand for the
real part and the imaginary part of µ, respectively. According to Theorem 5.1, we know
that for a sufficiently good approximation hℓ(s), likely there is only one s1 that satisfies
these conditions. Furthermore, since Q̂(σ) is in general small in size, the cost solving the
QEP Q̂(σ)ẑzz = 0 can be regarded as of O(1).
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The poles of h(s) = (Jnqqq)
⊤(MJn − sIn)

−⊤(MJn − sIn)
−1qqq correspond to some of the

eigenvalues of MJn. Depending on qqq, some eigenvalues of MJn may give removable poles
of h(s), but generically, the poles and the eigenvalues are the same. By Theorem 2.2,
we know that if M has the GUS property, τ is the unique positive pole of h(s) (see
Theorem 5.1 for more detailed discussions on the pole τ). This observation suggests that
we can obtain an approximation of τ by finding the positive pole(s) of hℓ(s), if any. From
(6.3), the poles τ1 of hℓ(s) relate to the eigenvalues ν of Hℓ by τ1 = s0 + 1/ν. Note that
Hℓ might have complex eigenvalues, and as a practical strategy, we choose

η = max
{
Re (µ) : 1/µ ∈ eig(Hℓ), |Im (µ)| ≤ 10−6

}
(6.9)

and use τ1 = η + s0 as an approximation of τ .
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Figure 6.2: Example 6.2. Left: indistinguishable h(s) and h5(s) (with limited y-axis range so
that the useful details can be recognized), the expansion point s0, and the approximate zero s1
and pole τ1 by h5(s); Right: small relative error |h(s) − h5(s)|/|h5(s)| away from zeros and poles
over a wide range of s.

To demonstrate the effectiveness of the above-mentioned ways for the approximating
the poles and zeros of h(s), we now revisit Example 6.1 (more numerical results will be
reported in section 7).

Example 6.2. Continuing with Example 6.1, Figure 6.2 compares h5(s) with h(s) over
an even larger range of s to the left of s0 to include a pole of h5(s) with h(s). Now, by
computing the eigenvalues of Q(σ) and Q̂(σ), we find the approximation τ1 ≈ 1.0992×103

of τ and the approximation s1 ≈ 1.5721×103 of s∗ with h(s1) ≈ 2.82×10−8. Interestingly,
Figure 6.2 shows another zero around ŝ1 = 8.3912×102 of h(s). This zero is not the solution
for SOCLCP(M,Kn, qqq) since the first element of xxx(ŝ1) = −(M − s1Jn)

−1qqq is negative, i.e.,
xxx(ŝ1) ̸∈ ∂(Kn). Indeed, this is an example for the case 5 in Theorem 5.1: 8.3912 × 102

and 1.5721× 103 are the approximations to s∗;1 and s∗;2, respectively, but s∗ = s∗;2 is the
desired one. So this example falls into the case 5 there. 3
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Next we look at an example for the special case s∗ = τ . Theorem 5.2 claims that
h(s) < 0 for 0 < s ̸= τ and Theorem 5.3 says τ is no longer a pole if τ is a simple
eigenvalue of MJn.

Example 6.3. We again use the matrix M ∈ R66×66 of bcsstk02 as an illustration. To
construct the special case, we first compute the largest eigenvalue τ ≈ 1.0996 × 103 of
MJn, and then generate the solution

xxx = [
√
n− 1, 1, · · · , 1]⊤ ∈ R66,

and finally set qqq = −(M−τJn)xxx. The function h(s) and the reduced h5(s) associated with
the example are plotted in Figure 6.3 which shows that indeed h(s) < 0 in the plotted
range of s > 0 and τ is not a pole any more, and also h5(s) has no poles on (0,∞). This
would be the case for whch [43, Algorithm 2] is triggered to solve this SOCLCP(M,Kn, qqq).
3
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Figure 6.3: Example 6.3. The special s∗ = τ which is no longer a pole any more. Left: indistin-
guishable h(s) and h5(s); Right: relative error |h(s)− h5(s)|/|h5(s)|.

6.3 The Reduced SOCLCP

In this subsection, we will establish an interesting connection of the factor-form-preserving
reduced hℓ(s) to an SOCLCP in the form of (1.1) of a much smaller size. To this end, we
first establish the following proposition.

Lemma 6.1. Let Yℓ = [yyy1, . . . , yyyℓ] ∈ Rn×ℓ (1 ≤ ℓ < n) be the orthonormal basis matrix
by Algorithm 6.1, i.e., Y ⊤

ℓ Yℓ = Iℓ. Then Y ⊤
ℓ JnYℓ has an eigenvalue ϱ := 2∥Yℓ;(1,:)∥22 − 1 ∈

[−1, 1], and all other eigenvalues are −1.

Proof. Note Jn = 2eee1eee
⊤
1 − In and Y ⊤

ℓ Yℓ = Iℓ. We have

Y ⊤
ℓ JnYℓ = 2Y ⊤

ℓ eee1eee
⊤
1 JnYℓ − Iℓ = 2Y ⊤

ℓ;(1,:)Yℓ;(1,:) − Iℓ,
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where Yℓ;(1,:) is the first row of Yℓ. Hence, Y ⊤
ℓ JnYℓ has an eigenvalue ϱ = 2∥Yℓ;(1,:)∥22 − 1,

and all other eigenvalues are −1. Due to 1 ≤ ℓ < n, we have that 0 ≤ ∥Yℓ;(1,:)∥22 ≤ 1 and
thus −1 ≤ ϱ ≤ 1.

Since Yℓ has orthogonal columns, ϱ > 0 for sufficiently large ℓ. Whenever ϱ > 0, the
matrix Y ⊤

ℓ JnYℓ admits the following decomposition:

Y ⊤
ℓ JnYℓ = Pℓ diag(ϱ,−Iℓ−1)P

⊤
ℓ (eigen-decomposition)

= Pℓ diag(
√
ϱ, Iℓ−1)Jℓ diag(

√
ϱ, Iℓ−1)P

⊤
ℓ , (6.10)

where Pℓ ∈ Rℓ×ℓ is orthogonal, i.e., P⊤
ℓ Pℓ = Iℓ. Substituting (6.10) into hℓ(s) yields

hℓ(s) = ∥bbbs0∥22eee⊤1 (P̂ℓ − σHℓP̂ℓ)
−⊤Jℓ(P̂ℓ − σHℓP̂ℓ)

−1eee1

= ∥bbbs0∥22qqq⊤ℓ (Mℓ − σJℓ)
−⊤Jℓ(Mℓ − σJℓ)

−1qqqℓ (6.11)

which corresponds to SOCLCP(Mℓ,Kℓ, qqqℓ), where P̂ℓ = Pℓ diag(1/
√
ϱ, Iℓ−1), and

Mℓ = JℓP̂
−1
ℓ H−1

ℓ P̂ℓ and qqqℓ = JℓP̂
−1
ℓ H−1

ℓ eee1. (6.12)

Theorem 6.2. In Lemma 6.1, if ϱ > 0, then hℓ corresponds to SOCLCP(Mℓ,Kℓ, qqqℓ) with
Mℓ and qqqℓ given by (6.12).

Remark 6.2. As was explained, by connecting the function hℓ(s) with an SOCLCP in
the form of (1.1), we know from (6.11) that solving hℓ(s) = gℓ(σ) = 0 is equivalent to
solving a much smaller SOCLCP(Mℓ,Kℓ, qqqℓ). Therefore, if we have an efficient algorithm
for solving small to medium size SOCLCPs in the form of (1.1), hℓ(s) = 0 can also be
tackled efficiently. From this point of view, our factor-form-preserving reduction procedure
can be viewed as a projection technique that projects the original large scale SOCLCP (1.1)
to a smaller SOCLCP (1.1) with the property that the Taylor series of the corresponding
functions h(s) and hℓ(s) at the expansion point match till the ℓth order term.

6.4 Algorithmic framework: LCPvA

Our foregoing discussions naturally lead to our main algorithmic framework to solve SO-
CLCP (1.1) by Krylov subspace reduction via the Arnoldi process. It is outlined in Al-
gorithm 6.2. However, in order to make the algorithm more efficient and stable, there
are still some issues needed to be addressed. In subsection 6.5, we shall first suggest a
strategy to improve the efficiency for the small-to medium-size dense problems, and in
subsection 6.6, we will discuss stability issue for large scale SOCLCP.

6.5 Transform dense SOCLCP to upper Hessenberg SOCLCP

The matrix M in this subsection is assumed to be of small-to-medium sizes and is dense.
We note that the main computationally heavy part of Algorithm 6.1 lie at its line 4:

solve Ms0www = Jnyyyj for www. (6.13)
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Algorithm 6.2 LCPvA: Linear Complementarity Problem via the Arnold process for
SOCLCP(M,Kn, qqq)

input: M,qqq, and kmax (maximum number of outer-iterations allowed);
output: an approximation to xxx ∈ SOL(M,Kn, qqq).
1: if qqq ∈ Kn then xxx = 0 and return;
2: if −M−1qqq ∈ Kn then xxx = −M−1qqq and return;
3: select s0 and set k = −1;
4: repeat
5: k = k + 1;
6: apply Algorithm 6.1 (with full re-orthogonalization) to generateHℓ and Yℓ associated

with Kℓ(Ask , bbbsk);
7: solve QEP (6.7) for the approximation sk+1 of s∗ according to (6.8);
8: solve (M − sk+1Jn)xxx(sk+1) = −qqq for xxx(sk+1);
9: if h(sk+1) ≤ ϵ ∥xxx(sk+1)∥22 and x1(sk+1) > 0 then

10: return xxx(sk+1) as an approximate solution of SOCLCP(M,Kn,www), and LCPvA
stops;

11: end if
12: until k ≥ kmax;
13: if k ≥ kmax and there is no positive zero of hℓ(s) then
14: call [43, Algorithm 2] for the special case s∗ = τ ;
15: else
16: LCPvA fails to find an approximate solution.
17: end if

These are linear systems like Ms0ttt = r and usually cost O(n3) flops for every first use of a
new expansion point s0 and O(n2) flops afterwards. Since s0 will have to be updated as it
has to move towards s∗, linear systems Ms0ttt = r will have to be solved for a few different
s0, and thus they could be computationally expensive.

Previously, we mentioned that if M is in the upper/lower Hessenberg form, the up-
per/lower triangular form included, then (6.13) takes only O(n2) flops to compute, inde-
pendent of s0. This is good.

But what happens when M is not in the upper/lower Hessenberg form? When the
size of M is modest, say up to a few thousands, and M is also dense, we can preprocess
SOCLCP(M,Kn, qqq) to transform it into one for which M is in the upper Hessenberg form.
Here is the detail. Find Q = diag(1, Q0) with orthogonal Q0 ∈ R(n−1)×(n−1) such that
Q⊤MQ is upper Hessenberg. Such a transformation from M to Q⊤MQ is not new and in
fact it is the first step by the name of the Hessenberg reduction in solving a dense eigenvalue
problem by the QR algorithm [11]. Important for us here is that it does not change the
second-order cone Kn: QKn = Kn and at the same time Q⊤JnQ = Jn. Therefore,
we can solve SOCLCP(Q⊤MQ,Kn, Q⊤qqq) instead: any zzz ∈ SOL(Q⊤MQ,Kn, Q⊤qqq) gives
xxx = Qzzz ∈ SOL(M,Kn, qqq) and vice versa.

It should be pointed out that the Hessenberg reduction itself, although only needed
to be done once, still costs O(n3) flops which can be too expensive to be practical for a

21



very large scale problem. Nevertheless, for large scale and sparse M , the involved linear
systems can be solved iteratively through exploiting the sparsity of M or fast matrix-
vector multiplications by M (at a cost usually much less than O(n2) flops that is needed
for a dense M).

Comparing with BN in [43], the new approach has the following noticeable advan-
tage: it does not need to compute the eigenpair (τ,vvv) of M⊤Jn, while the computational
complexity is almost the same as that of BN.

6.6 Reorthogonalization to prevent loss of orthogonality

A potential problem in the Arnoldi process is loss of orthogonality. There are extensive dis-
cussions on this issue, for example in [11, Chapter 7] and [34] and the references therein. It
is argued that the loss of orthogonality does not cause the algorithm to behave completely
unpredictable. Indeed, loss of orthogonality could result in multiple copies of the same
eigenvalues. There are also several cures for such loss of orthogonality, and the Arnoldi
algorithm with full reorthogonalization is one. Another alternative is selective reorthogo-
nalization [34] by orthogonalizing any new Arnoldi vector against already converged Ritz
vectors. Our choice is simply to do full reorthogonalization. Our goal is to find the zero s∗
of h(s) by iteratively (the outer-loop) choosing new and better shift s0 obtained from the
eigenvalues of the QEP for Q̂(σ) associated with the previous Arnoldi process; from this
point of view, we do not need Krylov subspaces of very large dimension in each outer-loop,
and therefore cost for doing full reorthogonalization is usually manageable.

7 Numerical experiments

We coded Algorithm 6.2 (LCPvA) in MATLAB 7.13.0 (R2011b) and tested it against
other efficient algorithms on an iMac ME086CH/A with Intel Core i5@2.7GHz and 8GB
memory. As we shall see, preliminary results demonstrate the high efficiency of LCPvA
for SOCLCP(M,Kn, qqq).

We divide our experiments into two parts: (1) numerical tests for (medium sized)
dense M , and (2) for large scale sparse M . In our current implementation, for dense M ,
we preprocess the associated SOCLCP(M,Kn, qqq) as we discussed in subsection 6.5 to make
sure all subsequent linear systems are solved in O(n2) flops. But for sparse M , we still use
MATLAB’s sparse LU decomposition to solve the linear system at line 8 of Algorithm 6.2
as well as the one at line 4 of Algorithm 6.1 in which one LU should be computed before
the for-loop and subsequently we just use triangular system solving. This is because an
LU decomposition costs potentially much more than two triangular system solvings. The
use of the LU decomposition in the sparse case limits the size of M that we can test on.
In the future, we will explore solving these linear systems iteratively to allow even larger
M .

All tested M are symmetric and positive definite (implying M has the GUS prop-
erty) and their condition numbers are varied from 10 to 105. As a comparison, we
also report the numerical results from three other methods: the BN iteration [43], and

22



two popular MATLAB software packages: SDPT3 [39, 40, 41] (version 4)6 and SeDuMi
[37] (version 1.3).We point out that both SDPT3 and SeDuMi are designed for general
semidefinite-quadratic-linear programming, not particularly targeting at SOCLCP in the
form of (1.1), but when M is symmetric and positive definite, solving SOCLCP(M,Kn, qqq)
is equivalent to solving the following convex quadratic second-order cone programming
(because SOCLCP(M,Kn, qqq) is indeed its KKT conditions):

min
xxx∈Kn

1

2
xxx⊤Mxxx+ qqq⊤xxx. (7.1)

In fact, if M is decomposed into or already takes the form

M = M̃⊤M̃, (7.2)

then according to [40, section 4.6] and [37], (7.1) can be converted equivalently to the
standard programming problems that can be solved by SDPT3 and SeDuMi. Following
[40, section 4.6] and [37], we outline the conversion procedure in Appendix A.

We run SDPT3 with its default setups and run the BN iteration with the parameters
used in the numerical testing in [43]; for SeDuMi, we set pars.eps = 10−10 as the desired
accuracy. As for our method LCPvA, the involved parameters and their recommended
ranges are summarized in Table 7.1. The use of the particular s0 as in the table is drawn
from our own experience on numerous tests.

Table 7.1: Parameters in LCPvA

parameter value description

ε 10−7 ∼ 10−4 Stopping criterion at line 9 in Algorithm 6.2

s0
∥M∥1

5
initial shift in Algorithm 6.2

kmax ≥ 3 maximal number of iterations for the outer loop of Algorithm 6.2

iterArnoldi Zkmax iterArnoldi(i) is the number of Arnoldi steps in the ith outer loop of Algorithm 6.2

Finally, in order to measure the accuracy of a computed solution xxx ∈ SOL(M,Kn, qqq),
we define the following three relative errors

χrel1 =
max{∥xxx(2:n)∥2 − x1, 0}

∥xxx∥2
, (7.3a)

χrel2 =
max{∥ggg(2:n)∥2 − g1, 0}
∥M∥1∥xxx∥2 + ∥qqq∥2

, (7.3b)

χrel3 =
|xxx⊤ggg|

∥xxx∥2(∥M∥1∥xxx∥2 + ∥qqq∥2)
, (7.3c)

and the total relative error
χrel = χrel1 + χrel2 + χrel3 , (7.4)

6The MATLAB package of SDPT3 is available at www.math.nus.edu.sg/∼mattohkc/sdpt3.html and
that of SeDuMi is available at sedumi.ie.lehigh.edu/downloads.
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where ggg = Mxxx + qqq. Our rationale in deciding the normalizing factors in (7.3) is the
following. Let fl(·) denote the computed result of an expression and u be the machine’s
unit roundoff. Then for exact xxx and qqq, we have fl(ggg) = Mxxx+ qqq +O(u [∥M∥1∥xxx∥2 + ∥qqq∥2])
and thus

fl(∥xxx(2:n)∥2 − x1) = ∥xxx(2:n)∥2 − x1 +O(u ∥xxx∥2),
fl(∥ggg(2:n)∥2 − g1) = ∥ggg(2:n)∥2 − g1 +O(u [∥M∥1∥xxx∥2 + ∥qqq∥2]),

fl(xxx⊤ggg) = xxx⊤ggg +O(u ∥xxx∥2[∥M∥1∥xxx∥2 + ∥qqq∥2]).

7.1 Numerical tests for dense M

This subsection is dedicated to numerical tests for medium scale dense problems. Following
[44], in this set of tests, we generate pairs (M = M̃⊤M̃,qqq), where entries of qqq are uniformly
distributed in [−1, 1] and

M̃ = diag
(
1,
√
1 + δ,

√
1 + 2δ, . . . ,

√
1 + (n− 1)δ

)
Q,

where Q = orth(randn(n,n)) and δ = cond
n . The way we construct M makes it convenient

to

1. control the condition number of M , which is (1− 1
n)cond+ 1 ≈ cond, and

2. easily formulate equivalent problems that SDPT3 and SeDuMi apply, as both of them
work on M̃ , not M = M̃⊤M̃ .

To evaluate the performance of the methods, for each n, we vary cond from 10 to 105, and
set ϵ = 10−7 as the stopping criteria at line 9 of Algorithm 6.2, and choose kmax = 3 and
iterArnoldi = [30, 20, 10] meaning that the calls to Algorithm 6.1 at line 6 of Algorithm 6.2
are with ℓ = 30, 20, 10 as k = 0, 1, 2, respectively.

For every given pair (n, δ), we generate 5 random SOCLCP(M,Kn, qqq) together with
randomly generated initial points xxx0 for BN, SDPT3 and SeDuMi. Feeding these problems
into the four methods7: BN, SDPT3, SeDuMi, and LCPvA, in Table 7.2 we report average
numbers of iterations (# iter), CPU times (measured by MATLAB function cputime) and
relative errors χrel defined by (7.3) for each method, over the 5 random problems for each
pair (n, δ). In particular, we mention that # iter for LCPvA is the number of total Arnoldi
steps in all calls to Algorithm 6.1 for each run of LCPvA, and the number of the iterations
for BN is listed as iterbisection/iterNewton, where iterbisection is the number of the bisection
steps and iterNewton is that of the Newton steps.

In applying BN and LCPvA, we first perform upper Hessenberg reduction on M as
explained in subsection 6.5.

Table 7.2 clearly shows the effectiveness of LCPvA for dense M in considering both
speed and relative accuracy. But BN comes out the best for n = 3000 and bigger, although
it is comparable to LCPvA for n = 1000. But we note that being an interpretative pro-
gramming language, MATLAB will consume much more time in executing the for-loop in

7For SDPT3 and SeDuMi, the inputs are M̃ , qqq, and xxx0.
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Table 7.2: Average numbers of iterations, CPU times and relative errors for dense M

n 1000 3000 5000

cond 10 103 105 10 103 105 10 103 105

# iter

BN 10.0/2.8 16.4/1.8 23.2/1.2 16.4/2.2 5.8/5.4 8.6/6.2 9.8/3.6 17.2/2.0 23.5/1.2

SDPT3 18.0 16.0 15.2 16.0 16.0 18.0 16.0 18.0 20.2

SeDuMi 13.8 12.8 15.8 13.8 13.8 17.2 15.0 13.6 16.4

LCPvA 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0

CPU(s)

BN 2.1 2.0 2.2 33.2 33.5 33.1 127.9 128.5 131.1

SDPT3 43.2 38.8 41.5 979.6 1014.7 1135.3 5144.9 5751.8 6039.5

SeDuMi 11.9 10.8 15.3 312.1 287.5 360.4 1521.5 1349.0 1646.8

LCPvA 1.8 1.8 1.7 35.5 35.4 35.3 161.0 160.4 161.5

χrel1

BN 6.0e− 17 4.2e− 16 0 6.5e− 17 1.7e− 16 0 5.9e− 16 3.0e− 16 0

SDPT3 0 0 0 0 0 0 0 0 0

SeDuMi 0 0 0 0 0 0 0 0 0

LCPvA 1.8e− 14 2.7e− 12 1.2e− 12 9.2e− 14 2.4e− 10 6.3e− 12 2.4e− 11 6.8e− 12 0

χrel2

BN 1.5e− 18 1.1e− 17 0 2.0e− 17 4.1e− 17 0 3.2e− 17 1.8e− 17 0

SDPT3 4.1e− 07 3.4e− 07 0 0 5.7e− 07 2.7e− 06 0 4.4e− 07 3.3e− 06

SeDuMi 2.4e− 06 0 0 0 0 0 3.7e− 06 0 0

LCPvA 1.0e− 15 1.2e− 13 6.0e− 14 3.2e− 15 6.9e− 12 1.6e− 13 7.0e− 13 1.5e− 13 0

χrel3

BN 5.0e− 15 1.4e− 13 1.1e− 13 3.0e− 16 2.2e− 15 7.3e− 13 7.6e− 16 1.8e− 15 7.4e− 12

SDPT3 2.9e− 07 2.4e− 07 6.1e− 06 9.8e− 06 4.0e− 07 1.9e− 06 1.8e− 05 3.1e− 07 2.4e− 06

SeDuMi 2.4e− 06 1.9e− 06 1.3e− 06 2.7e− 06 1.2e− 06 4.5e− 06 2.6e− 06 1.7e− 06 1.0e− 05

LCPvA 2.3e− 15 2.1e− 12 7.5e− 08 2.2e− 14 9.8e− 12 1.1e− 08 1.0e− 12 3.3e− 13 2.6e− 10

χrel

BN 5.1e− 15 1.4e− 13 1.1e− 13 3.9e− 16 2.4e− 15 7.3e− 13 1.3e− 15 2.1e− 15 7.4e− 12

SDPT3 7.1e− 07 5.9e− 07 6.1e− 06 9.9e− 06 9.7e− 07 4.6e− 06 1.8e− 05 7.5e− 07 5.7e− 06

SeDuMi 4.9e− 06 1.9e− 06 1.3e− 06 2.8e− 06 1.2e− 06 4.5e− 06 6.4e− 06 1.7e− 06 1.0e− 05

LCPvA 2.2e− 14 4.9e− 12 7.5e− 08 1.2e− 13 2.6e− 10 1.1e− 08 2.6e− 11 7.3e− 12 2.6e− 10

Algorithm 6.1 than it does when coded in the language C and FORTRAN. This may be
the reason that LCPvA runs slower than BN here for n = 3000 and bigger. In any case,
LCPvA is far more efficient than SDPT3 and SeDuMi.

7.2 Numerical tests for sparse M

For sparse problems, we can afford to treat M that are larger in size than those in the
previous subsection because they are sparse.

Our investigation is carried out on two testing sets. The test matrices M in the first
set are randomly generated while the matrices in the second are from the Matrix Market8.
The same stopping criteria as in the dense problems are used for SDPT3 and SeDuMi,
while for LCPvA, we relax the stopping criterion ϵ to ϵ = 10−5 because with it, LCPvA
already yields solutions with comparable relative errors to or much smaller relative errors
than what SDPT3 and SeDuMi give. For the eigenpair (τ,vvv) that BN needs, we use
the MATLAB function eigs with the default options. This alone makes BN much less

8http://math.nist.gov/MatrixMarket/index.html
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competitive on the first random testing set. Due to the destruction to the sparsity of M ,
we do not transform M to an upper Hessenberg matrix as we have done in the dense case.

In our first testing set, we choose to first generate the sparse M̃ with a prescribed
sparsity and condition number, and then form M = M̃⊤M̃ . It is clear that the number
of nonzero entries in M generated from this procedure is usually much larger than that
of M̃ . Limiting by our current hardware environment, we choose n = 10000 and generate
(M = M̃⊤M̃,qqq), where qqq is randomly generated with elements uniformly distributed in

the interval [−1, 1] and M̃ is generated by the MATLAB function

M̃ = sprandsym(n,density,rc, kind).

It returns an n-by-n symmetric and positive definite random matrix with approximately
the prescribed density and an approximate condition number 1

rc
, implying that the con-

dition number cond of M is approximately
(

1
rc

)2
. The value of the input kind can be

either 1 or 2, where the former means that M̃ is generated by random Jacobi rotations
on a positive definite diagonal matrix, while the latter indicates that M̃ is a shifted sum
of outer products. Both cases are tested with density = 0.0005 and different rc to make
cond vary from 102 to 105.

For each prescribed pair (rc,kind), we generate 5 triples (M = M̃⊤M̃,qqq,xxx0), where xxx0
is the initial point for the three algorithms other than LCPvA, and record the numerical
results by the four methods in Table 7.3. Also reported are the average sparse densities
dM and d

M̃
of M and M̃ for each pair (rc,kind), respectively.

We have several observations from Table 7.3:

(1) The numerical results show that each algorithm performs quite differently for the
case kind=1 and kind=2;

(2) For kind=1, it turns out that LCPvA has the best numerical performance in terms of
speed and accuracy. Note that there are almost twice as many number of nonzeros
in M as in M̃ . It is also observed that BN performs the worst due to the requirement
in finding an accurate eigenpair (τ,vvv);

(3) For kind=2, SDPT3 is the best in time; but its solutions are often less accurate than
the ones by LCPvA.

Our second set of testing matrices M are from the Matrix Market through searching
all real sparse symmetric, positive definite and non-diagonal matrices with 5000 ≤ n ≤
90000. We found nine matrices, namely s1rmq4m1, s1rmt3m1, s2rmq4m1, s2rmt3m1,
s3rmq4m1, s3rmt3m1, s3rmt3m3, bcsstk17 and bcsstk18, whose basic properties are
listed at the top of Table 7.4. The corresponding M̃ for SDPT3 and SeDuMi is computed
by M̃ = chol(M) (the CPU time for this is not counted in), and we also report dM and

d
M̃
, the sparse densities of M and M̃ , respectively. To form a specific SOCLCP (1.1),

we take qqq = [1, 1, . . . , 1]⊤ ∈ Rn and generate a random xxx0 as the starting vector for BN,
SDPT3 and SeDuMi.

Table 7.4 summarizes the numerical results for the second test set, where ‘−’ for BN
means that it fails in eigs for solving the eigenpair (τ,vvv). We observe that LCPvA has a
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Table 7.3: Numerical results for sparse problems in the first testing set

kind=1 kind=2(
1
rc

)2
(≈ cond) 102 104 105 102 104 105

d
M̃

3.2e− 04 5.0e− 04 4.1e− 04 5.1e− 04 6.5e− 04 5.5e− 04
dM 7.6e− 04 9.1e− 04 7.4e− 04 2.9e− 03 3.1e− 03 2.6e− 03

# iter

BN 7.4/5.4 6.2/6.6 9.0/10.0 13.4/2.6 5.8/5.4 8.6/6.2
SDPT3 21.2 21.0 20.0 16.0 20.0 20.6
SeDuMi 17.4 18.6 18.0 14.4 17.8 18.4
LCPvA 30.0 42.0 30.0 30.0 52.0 46.0

CPU(s)

BN 225.9 278.9 420.6 269.7 301.3 371.3
SDPT3 1.5 1.1 1.8 52.6 64.8 67.2
SeDuMi 2.9 3.3 3.7 824.7 1002.9 1067.1
LCPvA 1.3 2.5 1.5 374.2 528.3 716.2

χrel1

BN 1.4e− 15 5.6e− 01 1.4e− 00 5.8e− 16 9.1e− 16 2.8e− 01
SDPT3 0 0 0 0 0 0
SeDuMi 0 0 0 0 0 0
LCPvA 4.2e− 13 1.4e− 14 0 0 1.6e− 11 2.1e− 12

χrel2

BN 4.9e− 16 1.1e− 02 5.9e− 01 1.6e− 17 1.1e− 18 3.9e− 06
SDPT3 2.7e− 05 5.8e− 04 6.6e− 05 2.7e− 06 1.0e− 05 7.3e− 06
SeDuMi 0 3.4e− 07 0 3.8e− 07 2.1e− 06 1.2e− 06
LCPvA 1.7e− 13 8.6e− 06 0 0 8.9e− 15 2.4e− 13

χrel3

BN 6.0e− 16 1.5e− 03 6.7e− 16 3.1e− 16 1.3e− 18 1.1e− 15
SDPT3 2.0e− 05 4.1e− 04 4.7e− 05 1.9e− 06 7.4e− 06 5.1e− 06
SeDuMi 1.1e− 06 3.2e− 06 2.0e− 06 1.0e− 06 2.8e− 06 1.1e− 06
LCPvA 1.7e− 13 9.9e− 06 9.7e− 10 2.4e− 10 2.5e− 10 4.7e− 06

χrel

BN 2.5e− 15 5.8e− 01 2.0e− 00 9.0e− 16 9.2e− 16 2.8e− 01
SDPT3 4.7e− 05 9.9e− 04 1.1e− 04 4.6e− 06 1.7e− 05 1.2e− 05
SeDuMi 1.1e− 06 3.6e− 06 2.0e− 06 1.4e− 06 4.9e− 06 2.3e− 06
LCPvA 5.4e− 12 1.8e− 05 9.7e− 10 2.4e− 10 2.7e− 10 4.7e− 06

very good performance in all the cases except for bcsstk18. The failure is due to that
the choice s0 ≈ 1.0252 × 1010 by Table 7.1 is too far from the true s∗ ≈ 3.8768 × 103;
as a result, hℓ(s) provides a very poor approximation of h(s) near s∗ and the next shift
satisfying (6.8) cannot be found. We experimented with using different initial shifts and
were able to make LCPvA run successfully with s0 = ∥qqq∥2/5 to give χrel1 = χrel2 = 0 and
χrel3 = 1.9× 10−11 in 6.15 seconds. Although the s0 given in Table 7.1 has been working
so well until bcsstk18, this suggests that there are cases for which more effective s0 is
needed for LCPvA to succeed. We shall investigate this issue in our future study.

Finally, it is interesting to note that for bcsstk17, LCPvA uses only 20 Arnolid steps
which implies that a friendly breakdown occurred and, thereby, result in h20(s) ≡ h(s);
consequently, s∗ is an exact zero of h20(s). This is partially revealed by the tiny relative
error χrel = 8.9e− 14.

8 Concluding remarks

In this paper, we have proposed a Krylov subspace method for the linear complementarity
problem over a single second-order cone. The method is in the spirit of projection and
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Table 7.4: Numerical results for sparse problems in the second testing set

M s1rmq4m1 s1rmt3m1 s2rmq4m1 s2rmt3m1 s3rmq4m1 s3rmt3m1 s3rmt3m3 bcsstk17 bcsstk18

n 5489 5489 5489 5489 5489 5489 5357 10974 11948

cond 3.2e+ 06 5.4e+ 06 1.2e+ 08 5.8e+ 08 1.3e+ 10 1.3e+ 10 2.6e+ 10 6.5e+ 01 6.5e+ 01

2-norm 6.9e+ 05 9.7e+ 05 6.9e+ 04 9.7e+ 04 6.9e+ 03 9.7e+ 03 9.6e+ 03 1.3e+ 10 4.3e+ 10

dM 8.7e− 03 7.2e− 03 8.7e− 03 7.2e− 03 8.7e− 03 7.2e− 03 7.2e− 03 3.6e− 03 1.0e− 03

d
M̃

3.3e− 02 3.2e− 02 3.3e− 02 3.3e− 02 3.3e− 02 3.3e− 02 7.7e− 02 1.3e− 02 2.0e− 02

# iter

BN 25/1 25/1 21/1 22/2 18/2 18/2 18/2 1/10 −
SDPT3 15 16 14 13 12 18 14 18 32

SeDuMi 20 21 17 18 16 17 17 14 20

LCPvA 30 30 30 30 30 30 30 20 30

CPU(s)

BN 16.6 13.3 14.8 20.6 21.6 20.4 18.4 588.3 −
SDPT3 11.4 12.1 10.7 10.1 9.2 13.7 247.4 25.9 199.3

SeDuMi 36.7 34.9 22.7 28.6 16.1 18.8 102.4 25.5 151.1

LCPvA 9.7 5.8 9.6 6.0 9.1 6.2 5.2 6.3 6.7

χrel1

BN 0 0 0 0 0 0 0 1.4e− 00 −
SDPT3 0 0 0 0 0 0 0 0 0

SeDuMi 0 0 0 0 0 0 0 0 0

LCPvA 0 0 2.4e− 09 0 5.9e− 10 0 1.2e− 09 8.9e− 14 1.0e− 00

χrel2

BN 0 0 0 0 0 0 0 6.6e− 11 −
SDPT3 1.7e− 05 8.8e− 06 7.7e− 07 1.7e− 05 6.5e− 06 0 0 0 0

SeDuMi 0 0 2.1e− 08 1.4e− 07 2.0e− 06 9.1e− 07 9.3e− 07 0 0

LCPvA 0 0 1.3e− 10 0 3.5e− 11 0 5.9e− 11 4.2e− 24 7.6e− 23

χrel3

BN 1.1e− 13 2.4e− 13 1.8e− 12 7.5e− 17 1.4e− 16 2.6e− 17 1.9e− 17 2.3e− 25 −
SDPT3 1.2e− 05 6.2e− 06 5.5e− 07 1.2e− 05 4.6e− 06 1.2e− 08 4.0e− 06 4.6e− 07 8.1e− 08

SeDuMi 3.9e− 07 4.3e− 07 1.5e− 08 9.8e− 08 1.4e− 06 6.5e− 07 6.6e− 07 1.4e− 07 2.6e− 08

LCPvA 3.0e− 09 2.7e− 05 1.9e− 10 1.1e− 10 4.9e− 11 1.8e− 09 8.3e− 11 6.6e− 24 1.0e− 27

χrel

BN 1.1e− 13 2.4e− 13 1.8e− 12 7.5e− 17 1.4e− 16 2.6e− 17 1.9e− 17 1.4e− 00 −
SDPT3 2.8e− 05 1.5e− 05 1.3e− 06 2.9e− 05 1.1e− 05 1.2e− 08 4.0e− 06 4.6e− 07 8.1e− 08

SeDuMi 3.9e− 07 4.3e− 07 3.6e− 08 2.4e− 07 3.5e− 06 1.6e− 06 1.6e− 06 1.4e− 07 2.6e− 08

LCPvA 3.0e− 09 2.7e− 05 2.8e− 09 1.1e− 10 6.8e− 10 1.8e− 09 1.3e− 09 8.9e− 14 1.0e− 00

mimics the well-known Rayleigh-Ritz procedure [11, 15] for the large scale eigenvalue prob-
lems. It is known that the Rayleigh-Ritz procedure first seeks a good approximate subspace
to an invariant subspace and then projects the eigenvalue problem to a much smaller one
which is then solved to give approximate eigenpairs. The Krylov subspace technique is the
key in the first phase. When it comes to SOCLCP(M,Kn, qqq), it is not that evident that
what would constitute a good approximate subspace that could be used as a projection
subspace to yield a much smaller size SOCLCP (1.1). In this paper, through the special
rational function h(s) and techniques in the model reduction, we have successfully de-
fined good approximate subspaces upon which the original large scale SOCLCP(M,Kn, qqq)
is projected to yield much smaller scale problems. Their accuracy in approximating the
original problem can be controlled by the number ℓ of Arnoldi steps and measured by
|h(s) − hℓ(s)| which is of order O(sℓ). Basing on this idea, we presented an algorithmic
framework: LCPvA (Linear Complementarity Problem via Arnold) in Algorithm 6.2 which
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was put into test against existing sophisticated solvers. Our preliminary numerical results
demonstrate its efficiency.

Detailed theoretical analysis of the curve h(s) is also presented. It is of interest both in
theory and in computations. The success of our proposed method here in large part is due
to our complete knowledge on how h(s) behaves. That knowledge makes it possible for
us to select the right one among all zeros of the reduced hℓ(s) to approximate the desired
one of h(s).

We have identified two problems that warrant our further investigation. One is to
iteratively solve the linear systems arising in the Arnoldi process in Algorithm 6.1 for
extremely large scale SOCLCP. Our current implementation use MATLAB’s sparse LU
for simplicity. The other is to find better initial s0. So far the one given in Table 7.1 works
pretty well for us, except for one example in bcsstk18 for which we found a better initial
s0 is needed for convergence.

Our major assumption for SOCLCP(M,Kn, qqq) is that M has the GUS property upon
which all our developments are built. What happens when M does not have the GUS
property? This will be yet another problem that warrants our attention in the future.

We believe that the idea and technique we presented in this paper can be adapted to
efficiently solve other critical optimization problems such as the trust-region subproblem
[30, 31] and for more general linear complementarity problems such as (1.2). We will
investigate these problems, too.

A Convert SOCLCP (1.1) to the format for SDPT3 and SeDuMi

In this appendix, we outlines how to convert SOCLCP(M,Kn, qqq) to the format used in
SDPT3 and SeDuMi. For this purpose, it suffices to rewrite SOCLCP(M,Kn, qqq) into the
(primal) mathematical programming in the form of

(Primal) min
Ayyy=bbb, yyy∈K

ccc⊤yyy, (A.1)

and its dual form

(Dual) max
A⊤zzz+sss=ccc, sss∈K̆

bbb⊤zzz, (A.2)

where K is certain cone and K̆ stands for the dual cone of K .
To this end, we first note that when M is symmetric and positive definite, solving

SOCLCP(M,Kn, qqq) is equivalent to the following quadratic second-order cone program-
ming:

min
xxx∈Kn

1

2
xxx⊤Mxxx+ qqq⊤xxx. (A.3)

Now if M = M̃⊤M̃ , according to [39, 41], we can rewrite (A.3) equivalently as

min
ξ,xxx

1

2
ξ + qqq⊤xxx subject to ∥M̃xxx∥22 ≤ ξ, xxx ∈ Kn, ξ ∈ R+. (A.4)

29



By introducing a new variable ttt ∈ Kn+2, (A.4) is equivalent to

min
ξ,xxx, ttt

1

2
ξ + qqq⊤xxx

subject to

 −1
2 0

−1
2 0

0 M̃

[
ξ
xxx

]
+ ttt =

 1
2

−1
2
0

 , ttt ∈ Kn+2, xxx ∈ Kn, ξ ∈ R+,

which is in the form of (A.1) with

A =

 −1
2 0

−1
2 0 In+2

0 M̃

 , yyy =

 ξ
xxx
ttt

 , ccc =

 1
2
qqq
0

 , bbb =

 1
2

−1
2
0

 ,

and K = R+×Kn×Kn+2 = K̆ . In our numerical experiments, we employ SeDuMi to solve
the primal problem (A.1) while use SDPT3 to solve the dual problem (A.2).

References

[1] A. Auslender. Variational inequalities over the cone of semidefinite positive symmetric matri-
ces and over the Lorentz cone. Opt. Methods Soft., 18:359–376, 2003.

[2] Z. Bai and Y. Su. Dimension reduction of large-scale second-order dynamical systems via a
second-order Arnoldi method. SIAM J. Sci. Comput., 25(5):1692–1709, 2005.

[3] Z. Bai and Y. Su. SOAR: A second-order Arnoldi method for the solution of the quadratic
eigenvalue problem. SIAM J. Matrix Anal. Appl., 26(3):640–659, 2005.

[4] J. Burke and S. Xu. The global linear convergence of a noninterior path-following algorithm
for linear complementarity problems. Math. Oper. Res., 23:719–734, 1998.

[5] J.-S. Chen and S. H. Pan. A descent method for a reformulation of the second-order cone
complementarity problem. J. Comput. Appl. Math., 213:547–558, 2008.

[6] J.-S. Chen and P. Tseng. An unconstrained smooth minimization reformulation of the second-
order cone complementarity problem. Math. Programming, 104:293–327, 2005.

[7] X. Chen, L. Qi, and D. F. Sun. Global and superlinear convergence of the smoothing Newton
method and its application to general box constrained variational inequalities. Math. Comp.,
67:519–540, 1998.

[8] X. D. Chen, D. F. Sun, and J. Sun. Complementarity functions and numerical experiments on
some smoothing Newton methods for second-order-cone complementarity problems. Comput.
Opt. Appl., 25:39–56, 2003.

[9] E. Chiprout and M.S. Nakhla. Asymptotic Waveform Evaluation and Moment Matching for
Interconnect Analysis. Kluwer Academic Publishers, 1994.

[10] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Computer
Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1992.

[11] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

30



[12] P. Feldman and R. W. Freund. Efficient linear circuit analysis by Padé approximation via the
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