Short Problem 1:

Consider the observables $A = x^2$ and $B = L_z$:

- a) Construct the uncertainty principle for $\sigma_A \sigma_B$
- b) Evaluate σ_B for the hydrogen state ψ_{nlm}
- c) What can you conclude about $\langle xy \rangle$ in this state?

Short Problem 2:

Consider a three-dimensional vector space spanned by an orthonormal basis $|1\rangle, |2\rangle, |3\rangle$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by:

$$|\alpha\rangle = i|1\rangle - 2|2\rangle - i|3\rangle, \qquad |\beta\rangle = i|1\rangle + 2|3\rangle \tag{1}$$

a) Construct $\langle \alpha |$ and $\langle \beta |$ in terms of the dual basis $\langle 1 |, \langle 2 |, \langle 3 |$

b) Find $\langle \alpha | \beta \rangle$ and $\langle \beta | \alpha \rangle$

c) Find all nine matrix elements of the operator $\hat{A} = |\alpha\rangle\langle\beta|$ in that basis and construct the matrix **A**. Is it Hermitian?

Long Problem 1:

a) Evaluate the following commutators:

i) [L, S.L]ii) [L.S, S]iii) [L, S.J]iv) $[L.S, S^2]$ v) $[L.S, J^2]$

b) The Hamiltonian for an electron in the Hydrogen atom with spin-orbit coupling has the form:

$$H = H_0 + \alpha L.S \tag{2}$$

Where α is small. The eigenstates of the unperturbed Hamiltonian H_0 can be expressed in terms of angular momentum quantum numbers $|njlsm_j\rangle$. Calculate the first order energy perturbation of each state from the spin-orbit coupling.

c) Show that m_l and m_s are no longer good quantum numbers when the perturbation is included, but m_j is.

Long Problem 2:

Find the energy levels and wave functions of the ground state and the first excited state for a system of two non-interacting identical spin-1/2 particles moving in a common external harmonic oscillator potential.