Short Problem 1:

Consider the observables $A=x^{2}$ and $B=L_{z}$:
a) Construct the uncertainty principle for $\sigma_{A} \sigma_{B}$
b) Evaluate σ_{B} for the hydrogen state $\psi_{n l m}$
c) What can you conclude about $\langle x y\rangle$ in this state?

Short Problem 2:

Consider a three-dimensional vector space spanned by an orthonormal basis $|1\rangle,|2\rangle,|3\rangle$. Kets $|\alpha\rangle$ and $|\beta\rangle$ are given by:

$$
\begin{equation*}
|\alpha\rangle=i|1\rangle-2|2\rangle-i|3\rangle, \quad|\beta\rangle=i|1\rangle+2|3\rangle \tag{1}
\end{equation*}
$$

a) Construct $\langle\alpha|$ and $\langle\beta|$ in terms of the dual basis $\langle 1|,\langle 2|,\langle 3|$
b) Find $\langle\alpha \mid \beta\rangle$ and $\langle\beta \mid \alpha\rangle$
c) Find all nine matrix elements of the operator $\hat{A}=|\alpha\rangle\langle\beta|$ in that basis and construct the matrix A. Is it Hermitian?

Long Problem 1:

a) Evaluate the following commutators:
i) $[L, S . L]$
ii) $[L . S, S]$
iii) $[L, S . J]$
iv) $\left[L . S, S^{2}\right]$
v) $\left[L . S, J^{2}\right]$
b) The Hamiltonian for an electron in the Hydrogen atom with spin-orbit coupling has the form:

$$
\begin{equation*}
H=H_{0}+\alpha L . S \tag{2}
\end{equation*}
$$

Where α is small. The eigenstates of the unperturbed Hamiltonian H_{0} can be expressed in terms of angular momentum quantum numbers $\left|n j l s m_{j}\right\rangle$. Calculate the first order energy perturbation of each state from the spin-orbit coupling.
c) Show that m_{l} and m_{s} are no longer good quantum numbers when the perturbation is included, but m_{j} is.

Long Problem 2:

Find the energy levels and wave functions of the ground state and the first excited state for a system of two non-interacting identical spin- $1 / 2$ particles moving in a common external harmonic oscillator potential.

